Solutions

1. Assign "true" or "false" to each of the following statements. No justification need be given.
(a) F
(b) T
(c) T
(d) T
(e) F
(f) F
(g) T
(h) T
2. Let $A=\mathcal{P}(\mathbb{R})$. Define $f: \mathbb{R} \rightarrow A$ by the formula

$$
f(x)=\left\{y \in \mathbb{R}: y^{2}<x\right\} .
$$

(a) Is f one-to-one? Prove your answer.

Since $f(0)=\emptyset$, and $f(-1)=\emptyset$, and $0 \neq-1, f$ is not one-to-one.
(b) Is f onto? Prove your answer.

No.
Suppose $a>0$. Then $f(a)=(-\sqrt{a}, \sqrt{a})$. So, $0 \in f(a)$.
Now, suppose $a<0$. Then $f(a)=\emptyset$.
Hence, $f(a)$ is either the empty set, or $f(a)$ contains zero.
Consider $T=\{1,2\} \in A$. We know that $T \neq \emptyset$ and $0 \notin T$. Hence, $T \neq f(a)$ for any $a \in \mathbb{R}$.
Thus, f is not onto.
3. Let R be a relation on \mathbb{Q} defined by $(p / q, r / s) \in R \Leftrightarrow p s=q r$. Show that R is an equivalence relation.
Reflexive:
For any $p / q \in \mathbb{Q}, p q=q p,(p / q, p / q) \in R$. Hence, R is reflexive.
Symmetric:
Suppose $(a / b, c / d) \in R$. Then $a d=b c$. Hence, $b c=a d$ and $c b=d a$, so $(c / d, a / b) \in R$. Thus, R is symmetric.
Transitive:
Suppose $\left(a_{1} / b_{1}, a_{2} / b_{2}\right) \in R$ and $\left(a_{2} / b_{2}, a_{3} / b_{3}\right) \in R$.
Then $a_{1} b_{2}=a_{2} b_{1}$ and $a_{2} b_{3}=a_{3} b_{2}$.
Then $a_{1} b_{2} b_{3}=a_{2} b_{1} b_{3}$
$a_{1} b_{3} b_{2}=b_{1} a_{2} b_{3}$
so
$a_{1} b_{3} b_{2}=b_{1} a_{3} b_{2}$
and hence
$a_{1} b_{3}=b_{1} a_{3}$. Hence, $\left(a_{1} / b_{1}, a_{3} / b_{3}\right) \in R$. Thus, R is transitive.
Since R is reflexive, symmetric and transitive, R is an equivalence relation.
4. Give a proof by induction that 6 divides $n^{3}-n$ for all $n \in \mathbb{Z}_{\geq 0}$.

Let $n=0$. Then $n^{3}-n=0$ and $6 \mid 0$, so $6 \mid n^{3}-n$ when $n=0$.
Suppose $6 \mid k^{3}-k$ for some $k \geq 0$.
Then

$$
\begin{aligned}
(k+1)^{3}-(k+1) & = \\
k^{3}+3 k^{2}+3 k+1-k-1 & = \\
k^{3}+3 k^{2}+2 k & = \\
k^{3}-k+3 k^{2}+3 k & = \\
k^{3}-k+3\left(k^{2}+k\right) & = \\
k^{3}-k+3 k(k+1) . & =
\end{aligned}
$$

For all $k \in \mathbb{Z}, k$ is even or $k+1$ is even. Hence, $k(k+1)$ is even, and so $6 \mid 3 k(k+1)$.
Since $6\left|k^{3}-k, 6\right|(k+1)^{3}-(k+1)$.
Hence, $6 \mid n^{3}-n$ for all $n \geq 0$.
5. Suppose $f: A \rightarrow C$ and $g: B \rightarrow C$. Prove that if A and B are disjoint, then

$$
f \cup g: A \cup B \rightarrow C
$$

Let $x \in A \cup B$. Since $A \cap B=\emptyset, x \in A$ or $x \in B$ and not both.
If $x \in A$, then $\exists c \in C$ such that $(x, c) \in f$.
If $x \in B$, then $\exists c \in C$ such that $(x, c) \in g$.
Thus, $\exists c \in C$ such that $(x, c) \in f \cup g$.
Suppose $\exists c_{1}, c_{2} \in C$ and $x \in A \cup B$ such that

$$
\left(x, c_{1}\right) \in f \cup g \text { and }\left(x, c_{2}\right) \in f \cup g .
$$

Then three cases are possible:

$$
\begin{aligned}
& \text { (1) }\left(x, c_{1}\right) \in f \text { and }\left(x, c_{2}\right) \in f \\
& \text { (2) }\left(x, c_{1}\right) \in f \text { and }\left(x, c_{2}\right) \in g \\
& \text { (3) }\left(x, c_{1}\right) \in g \text { and }\left(x, c_{2}\right) \in g
\end{aligned}
$$

Case (1) would imply that f is not a function.

Case (3) would imply that g is not a function.
Case (2) would imply that $x \in A$ and $x \in B$, which is not possible since $A \cap B=\emptyset$.
Thus, for all $x \in A \cup B$, there exists a unique $c \in C$ such that $(x, c) \in f \cup g$.
That is, $f \cup g: A \cup B \rightarrow C$.
6. Suppose R and S are equivalence relations on a set A and $A / R=A / S$. Prove that $R=S$.

Let's show $R \subseteq S$.
Suppose $(a, b) \in R$.
Then $\exists x \in A / R$ such that $a \in x$ and $b \in x$.
Hence, $x \in A / S$ and $a \in x$ and $b \in x$.
Thus, $(a, b) \in S$ and so $R \subseteq S$.
A symmetric argument shows that $S \subseteq R$, and so $R=S$.

