Final Exam

June 6, 2012

Solutions

1. Assign "true" or "false" to each of the following statements. No justification need be given.
(a) T
(b) F
(c) F
(d) T
(e) T
(f) F
(g) T
(h) F
2. Suppose $f: A \rightarrow B$ and f is one-to-one. Prove that there is some set $B^{\prime} \subseteq B$ such that $f^{-1}: B^{\prime} \rightarrow$ A.
Let $B^{\prime}=\{b \in B: \exists a \in A$ such that $f(a)=b\}$. Consider $g: A \rightarrow B^{\prime}$ defined by $g(a)=f(a)$ for $a \in A$.
Let $b \in B^{\prime}$. Then $\exists a \in A$ with $g(a)=b$. So g is onto.
Suppose $a_{1}, a_{2} \in A$ and $g\left(a_{1}\right)=g\left(a_{2}\right)$. Then $f\left(a_{1}\right)=f\left(a_{2}\right)$, so $a_{1}=a_{2}$ since f is one-to-one. Hence g is one-to-one.
Thus g is a bijection, so $g^{-1}: B^{\prime} \rightarrow A$.
But, $g^{-1}=f^{-1}$, so $f^{-1}: B^{\prime} \rightarrow A$.
3. Let $A=\mathcal{P}(\mathbb{R})$. Define $f: \mathbb{R} \rightarrow A$ by the formula

$$
f(x)=\left\{y \in \mathbb{R}: y^{2}<x\right\}
$$

(a) Is f one-to-one? Prove your answer.

Since $f(0)=\emptyset$, and $f(-1)=\emptyset$, and $0 \neq-1, f$ is not one-to-one.
(b) Is f onto? Prove your answer.

No.
Suppose $a>0$. Then $f(a)=(-\sqrt{a}, \sqrt{a})$. So, $0 \in f(a)$.
Now, suppose $a<0$. Then $f(a)=\emptyset$.
Hence, $f(a)$ is either the empty set, or $f(a)$ contains zero.
Consider $T=(1,2) \in A$. We know that $T \notin \emptyset$ and $0 \notin T$. Hence, $T \neq f(a)$ for any $a \in \mathbb{R}$.
Thus, f is not onto.
4. Let $S=\{(x, y) \in \mathbb{R} \times \mathbb{R}: x-y \in \mathbb{Z}\}$.

Is S an equivalence relation? Prove your answer.
Yes.

Reflexive:
For all $x \in \mathbb{R}, x-x=0 \in \mathbb{Z}$. So, $(x, x) \in R$ for all $x \in \mathbb{R}$. Hence, R is reflexive.
Symmetric:
Suppose $x, y \in \mathbb{R}$ and $x-y=m \in \mathbb{Z}$.
Then $y-x=-m \in \mathbb{Z}$.
So, $(x, y) \in R$ implies $(y, x) \in R$. Thus, R is symmetric.
Transitive:
Suppose $(x, y) \in R$ and $(y, z) \in R$.
Let $x-y=a$ and $y-z=b$. Then $a \in \mathbb{Z}$ and $b \in \mathbb{Z}$.
Then $x-z=a+b \in \mathbb{Z}$ since \mathbb{Z} is closed under addition.
Hence $(x, z) \in R$, and so R is transitive.
Thus R is an equivalence relation.
5. Use induction to prove that 49 divides $36^{n}+14 n-1$ for all $n \in \mathbb{Z}_{\geq 0}$.

If $n=0$, then $36^{n}+14 n-1=1+0-1=0$, so $49 \mid 36^{n}+14 n-1$.
Suppose $49 \mid 36^{k}+14 k-1$ for some $k \in \mathbb{Z}_{\geq 0}$. Say $36^{k}+14 k-1=49 m$ for some $m \in \mathbb{Z}$.
Then

$$
\begin{aligned}
36^{k+1}+14(k+1)-1 & = \\
36\left(36^{k}+14 k-1\right)-36(14 k)+36+14(k+1)-1 & = \\
36(49 m)-36(14 k)+14 k+36+14-1 & = \\
36(49 m)-35(14 k)+49 & = \\
36(49 m)-49(10 k)+49 & = \\
49(36 m-10 k+1) & =
\end{aligned}
$$

Hence, $49 \mid 36^{k+1}+14(k+1)-1$.
Thus, $49 \mid 36^{n}+14(n)-1$ for all $n \in \mathbb{Z}_{\geq 0}$.
6. Suppose R is an equivalence relation on a set A.

Prove that for every $x \in A$ and $y \in A, y \in[x]_{R}$ iff $[y]_{R}=[x]_{R}$.
(\leftarrow)
Suppose $[y]_{R}=[x]_{R}$. Since $y \in[y]_{R}, y \in[x]_{R}$.
(\rightarrow)
Suppose $y \in[x]_{R}$. Then $(x, y) \in R$. Let $a \in[y]_{R}$. Then $(a, y) \in R$.
But $(x, y) \in R$, so $(y, x) \in R$, so by transitivity of $R,(a, x) \in R$. Hence, $a \in[x]$. Thus, $[y]_{R} \subseteq[x]_{R}$. Let $b \in[x]_{R}$. Then $(x, b) \in R$. But, $(y, x) \in R$. By transitivity, $(y, b) \in R$, so $b \in[y]_{R}$.
So, $[x]_{R} \subseteq[y]_{R}$.
Thus, $[x]_{R}=[y]_{R}$.

