Math 300 B - Spring 2012 Final Exam June 6, 2012 Solutions

- 1. Assign "true" or "false" to each of the following statements. No justification need be given.
 - (a) T
 - (b) F
 - (c) F
 - (d) T
 - (e) T
 - (f) F
 - (g) T
 - (h) F
- 2. Suppose $f : A \to B$ and f is one-to-one. Prove that there is some set $B' \subseteq B$ such that $f^{-1} : B' \to A$.

Let $B' = \{b \in B : \exists a \in A$ such that $f(a) = b\}$. Consider $g : A \to B'$ defined by g(a) = f(a) for $a \in A$.

Let $b \in B'$. Then $\exists a \in A$ with g(a) = b. So g is onto.

Suppose $a_1, a_2 \in A$ and $g(a_1) = g(a_2)$. Then $f(a_1) = f(a_2)$, so $a_1 = a_2$ since f is one-to-one. Hence g is one-to-one.

Thus *g* is a bijection, so $g^{-1} : B' \to A$. But, $g^{-1} = f^{-1}$, so $f^{-1} : B' \to A$.

3. Let $A = \mathcal{P}(\mathbb{R})$. Define $f : \mathbb{R} \to A$ by the formula

$$f(x) = \{ y \in \mathbb{R} : y^2 < x \}.$$

- (a) Is *f* one-to-one? Prove your answer. Since $f(0) = \emptyset$, and $f(-1) = \emptyset$, and $0 \neq -1$, *f* is not one-to-one.
- (b) Is *f* onto? Prove your answer.

No.

Suppose a > 0. Then $f(a) = (-\sqrt{a}, \sqrt{a})$. So, $0 \in f(a)$. Now, suppose a < 0. Then $f(a) = \emptyset$. Hence, f(a) is either the empty set, or f(a) contains zero. Consider $T = (1, 2) \in A$. We know that $T \notin \emptyset$ and $0 \notin T$. Hence, $T \neq f(a)$ for any $a \in \mathbb{R}$. Thus, f is not onto.

4. Let $S = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x - y \in \mathbb{Z}\}.$

Is *S* an equivalence relation? Prove your answer.

Yes.

Reflexive:

For all $x \in \mathbb{R}$, $x - x = 0 \in \mathbb{Z}$. So, $(x, x) \in R$ for all $x \in \mathbb{R}$. Hence, R is reflexive. Symmetric: Suppose $x, y \in \mathbb{R}$ and $x - y = m \in \mathbb{Z}$. Then $y - x = -m \in \mathbb{Z}$. So, $(x, y) \in R$ implies $(y, x) \in R$. Thus, R is symmetric. Transitive: Suppose $(x, y) \in R$ and $(y, z) \in R$. Let x - y = a and y - z = b. Then $a \in \mathbb{Z}$ and $b \in \mathbb{Z}$. Then $x - z = a + b \in \mathbb{Z}$ since \mathbb{Z} is closed under addition. Hence $(x, z) \in R$, and so R is transitive. Thus R is an equivalence relation. 5. Use induction to prove that 49 divides $36^n + 14n - 1$ for all $n \in \mathbb{Z}_{\geq 0}$.

If n = 0, then $36^n + 14n - 1 = 1 + 0 - 1 = 0$, so $49|36^n + 14n - 1$. Suppose $49|36^k + 14k - 1$ for some $k \in \mathbb{Z}_{\geq 0}$. Say $36^k + 14k - 1 = 49m$ for some $m \in \mathbb{Z}$. Then

$$\begin{split} 36^{k+1} + 14(k+1) - 1 &= \\ 36(36^k + 14k - 1) - 36(14k) + 36 + 14(k+1) - 1 &= \\ 36(49m) - 36(14k) + 14k + 36 + 14 - 1 &= \\ 36(49m) - 35(14k) + 49 &= \\ 36(49m) - 49(10k) + 49 &= \\ 49(36m - 10k + 1). \end{split}$$

Hence, $49|36^{k+1} + 14(k+1) - 1$. Thus, $49|36^n + 14(n) - 1$ for all $n \in \mathbb{Z}_{>0}$.

6. Suppose *R* is an equivalence relation on a set *A*.

Prove that for every $x \in A$ and $y \in A$, $y \in [x]_R$ iff $[y]_R = [x]_R$. (\leftarrow) Suppose $[y]_R = [x]_R$. Since $y \in [y]_R$, $y \in [x]_R$. (\rightarrow) Suppose $y \in [x]_R$. Then $(x, y) \in R$. Let $a \in [y]_R$. Then $(a, y) \in R$. But $(x, y) \in R$, so $(y, x) \in R$, so by transitivity of R, $(a, x) \in R$. Hence, $a \in [x]$. Thus, $[y]_R \subseteq [x]_R$. Let $b \in [x]_R$. Then $(x, b) \in R$. But, $(y, x) \in R$. By transitivity, $(y, b) \in R$, so $b \in [y]_R$. So, $[x]_R \subseteq [y]_R$. Thus, $[x]_R = [y]_R$.