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1. Let S be a set.

Define a function f : P(S)→ P(S) by f(A) = S \ A for all A ∈ P(S).
Prove that f is a bijection.

Proof: Let S be a set and define f : P((S)→ P(S) as above.

Suppose A1, A2 ∈ P(S) with f(A1) = f(A2). Then

S \ A1 = S \ A2.

Suppose x ∈ A1 but x 6∈ A2.

Then x ∈ S (since A1 ⊆ S), and x ∈ S \ A2, but x 6∈ S \ A1.

This is a contradiction to the fact that S \ A1 = S \ A2.

Hence if x ∈ A1 then x ∈ A2; i.e, A1 ⊆ A2.

By an identical argument, we may also conclude that A2 ⊆ A1.

Thus A1 = A2.

Hence, f(A1) = f(A2) implies A1 = A2, and so f is one-to-one.

Suppose B ∈ P(S).
Let Z = S \B (note that, since Z ⊆ S,Z ∈ P(S)).
Then f(Z) = S \ (S \B). We want to show that f(Z) = B.

Suppose x ∈ S \ (S \B).

Then x ∈ S and x 6∈ S \B.

Since x 6∈ S \B, and x ∈ S, x ∈ B.

So S \ (S \B) ⊆ B.

On the other hand, suppose x ∈ B.

Then x ∈ S and x 6∈ S \B, so x ∈ S \ (S \B).

Hence, S \ (S \B) = B.

Thus, for all B ∈ P(S), ∃Z ∈ P(S) such that f(Z) = B.

Thus f is onto.

Hence f is one-to-one and onto, i.e., f is a bijection. �



2. Let S be the set of all functions f : R⇒ R. Define a relation R on S by

(f, g) ∈ R⇔ ∃c ∈ R, c 6= 0, such that f(x) = cg(x) for all x ∈ R.

(a) Prove that R is an equivalence relation.
(b) Let f : R→ R be a non-constant, linear function.

Consider [f ], the equivalence class of f under the relation R.
Let g : R→ R be a linear function.
Show that, g ∈ [f ] iff f and g have the same x-intercept.

(a) Proof: Let f ∈ S.

Since f(x) = (1)f(x) for all x ∈ R, (f, f) ∈ R.

Hence, R is reflexive.

Suppose (f, g) ∈ R.

Then there exists a c ∈ R, c 6= 0 such that f(x) = cg(x) for all x ∈ R. Since c 6= 0,

g(x) =
1

c
f(x)

for all x ∈ R and 1
c
6= 0, 1

c
∈ R.

Thus (g, f) ∈ R.

Hence, R is symmetric.

Suppose (f, g) ∈ R and (g, h) ∈ R.

Then there exist non-zero c, d ∈ R such that f(x) = cg(x) and g(x) = dh(x) for all x ∈ R.

Hence, f(x) = cdh(x) for all x ∈ R.

Since c and d are non-zero, cd is non-zero, and cd ∈ R, so (f, h) ∈ R.

Thus, R is transitive, and so R is an equivalence relation. �

(b) Proof: Suppose g ∈ [f ].

Then (g, f) ∈ R so there exists a non-zero c ∈ R such that g(x) = cf(x) for all x ∈ R.

Since g is non-constant, it has an x-intercepts; suppose g(z) = 0.

Then 0 = g(z) = cf(z), and since c 6= 0, f(z) = 0.

Hence, g and f have the same x-intercept.

Now, suppose g and f have the same x-intercept; suppose g(a) = f(a) = 0.

Suppose g(x) = m1x+ b1 and f(x) = m2x+ b2.

Then m1a+ b1 = 0 and m2a+ b2 = 0, so

a = − b1
m1

= − b2
m2

,

so b1 =
m1b2
m2

.

Let c = m1

m2
.

Then cf(x) = m1

m2
(m2x+ b2) = m1x+ b2

m1

m2
= m1x+ b1 = g(x) for all x ∈ R.

Hence g ∈ [f ]. �



3. Let A, B, and C be sets.

Prove that A ∪ C ⊆ B ∪ C iff A \ C ⊆ B \ C.

Proof: Suppose A ∪ C ⊆ B ∪ C.

Suppose x ∈ A \ C.

Then x ∈ A, so x ∈ A ∪ C, and since A ∪ C ⊆ B ∪ C, x ∈ B ∪ C.

Since x ∈ A \ C, x 6∈ C.

Since x ∈ B ∪ C, but x 6∈ C, x ∈ B and so x ∈ B \ C.

Hence A \ C ⊆ B \ C.

Now, suppose A \ C ⊆ B \ C.

Suppose x ∈ A ∪ C.

If x ∈ C then x ∈ B ∪ C.

Suppose x 6∈ C.

Then x ∈ A and so x ∈ A \ C.

Since A \ C ⊆ B \ C, x ∈ B \ C, and so x ∈ B, and hence x ∈ B ∪ C.

Thus, A ∪ C ⊆ B ∪ C. �

4. Let A and B be sets.

Let f and g be functions from A to B.

Prove that if f ∩ g 6= ∅, then f \ g is not a function from A to B.

Proof: Suppose f ∩ g 6= ∅.

Then ∃ (a, b) ∈ f ∩ g.

So (a, b) 6∈ f \ g.

Suppose ∃(a, c) ∈ f \ g for some c ∈ B.

Then (a, c) ∈ f and, since f is a function c = b, so (a, b) ∈ f \ g.

This is a contradiction: (a, b) 6∈ f \ g.

Hence, there does not exist an ordered pair (a, c) ∈ f \ g for any c ∈ B.

Therefore, f \ g is not a function. �

5. Let n ∈ Z>0.

Use induction to prove
n∑

i=1

1

(2i− 1)(2i+ 1)
=

n

2n+ 1
.

Proof: Let P (n) be the statement “
n∑

i=1

1

(2i− 1)(2i+ 1)
=

n

2n+ 1
”.

Since
1∑

i=1

1

(2i− 1)(2i+ 1)
=

1

3
=

1

2(1) + 1
,

P(1) is true.



Suppose there exists a k > 0 such that P (k) is true.

Then

k+1∑
i=1

1

(2i− 1)(2i+ 1)
=

k∑
i=1

1

(2i− 1)(2i+ 1)
+

1

(2(k + 1)− 1)(2(k + 1) + 1)

=
k

2k + 1
+

1

(2k + 1)(2k + 3)
(by the induction hypothesis)

=
k

2k + 1
+

1

(2k + 1)(2k + 3)

=
k(2k + 3) + 1

(2k + 1)(2k + 3)

=
2k2 + 3k + 1

(2k + 1)(2k + 3)

=
(2k + 1)(k + 1)

(2k + 1)(2k + 3)

=
k + 1

2k + 3

Hence P (k + 1) is true, so P (k) implies P (k + 1).

Hence, by induction, P (k) is true for all k > 0. �

6. Let n be an integer. Prove that 4|n4 + 2n iff n is even.

Proof:

Suppose n is even.

Then n = 2m for some integer m, and

n4 + 2n = (2m)4 + 2(2m) = 16m4 + 4m = 4(4m4 +m)

and so 4|n4 + 2n.

Now suppose n is odd.

Then n ≡ 1 (mod 4) or n ≡ 3 (mod 4)

If n ≡ 1 (mod 4), then n4 ≡ 1 (mod 4) and 2n ≡ 2 (mod 4) and so n4 + 2n ≡ 3 (mod 4), in
which case, 4 does not divide n4 + 2n.

If n ≡ 3 (mod 4), then n4 ≡ 1 (mod 4) and 2n ≡ 2 (mod 4), and so n4 + 2n ≡ 3 (mod 4), in
which case 4 does not divide n4 + 2n.

Thus, 4 divides n4 + 2n iff n is even.

�


