Math 300 B - Spring 2013 Final Exam June 12, 2013 Answers

1. Let S be a set.

Define a function $f : \mathcal{P}(S) \to \mathcal{P}(S)$ by $f(A) = S \setminus A$ for all $A \in \mathcal{P}(S)$. Prove that f is a bijection.

Proof: Let *S* be a set and define $f : \mathcal{P}((S) \to \mathcal{P}(S)$ as above. Suppose $A_1, A_2 \in \mathcal{P}(S)$ with $f(A_1) = f(A_2)$. Then

$$S \setminus A_1 = S \setminus A_2.$$

Suppose $x \in A_1$ but $x \notin A_2$.

Then $x \in S$ (since $A_1 \subseteq S$), and $x \in S \setminus A_2$, but $x \notin S \setminus A_1$.

This is a contradiction to the fact that $S \setminus A_1 = S \setminus A_2$.

Hence if $x \in A_1$ then $x \in A_2$; i.e, $A_1 \subseteq A_2$.

By an identical argument, we may also conclude that $A_2 \subseteq A_1$. Thus $A_1 = A_2$.

Hence, $f(A_1) = f(A_2)$ implies $A_1 = A_2$, and so f is one-to-one.

Suppose $B \in \mathcal{P}(S)$.

Let $Z = S \setminus B$ (note that, since $Z \subseteq S, Z \in \mathcal{P}(S)$).

Then $f(Z) = S \setminus (S \setminus B)$. We want to show that f(Z) = B.

Suppose $x \in S \setminus (S \setminus B)$.

Then $x \in S$ and $x \notin S \setminus B$.

Since $x \notin S \setminus B$, and $x \in S$, $x \in B$.

So $S \setminus (S \setminus B) \subseteq B$.

On the other hand, suppose $x \in B$.

Then $x \in S$ and $x \notin S \setminus B$, so $x \in S \setminus (S \setminus B)$.

Hence, $S \setminus (S \setminus B) = B$.

Thus, for all $B \in \mathcal{P}(S)$, $\exists Z \in \mathcal{P}(S)$ such that f(Z) = B.

Thus f is onto.

Hence f is one-to-one and onto, i.e., f is a bijection.

2. Let S be the set of all functions $f : \mathbb{R} \Rightarrow \mathbb{R}$. Define a relation R on S by

 $(f,g) \in R \Leftrightarrow \exists c \in \mathbb{R}, c \neq 0$, such that f(x) = cg(x) for all $x \in \mathbb{R}$.

- (a) *Prove that R is an equivalence relation.*
- (b) Let f : R → R be a non-constant, linear function. Consider [f], the equivalence class of f under the relation R. Let g : R → R be a linear function. Show that, g ∈ [f] iff f and g have the same x-intercept.

(a) **Proof:** Let $f \in S$.

Since f(x) = (1)f(x) for all $x \in \mathbb{R}$, $(f, f) \in R$.

Hence, R is reflexive.

Suppose $(f, g) \in R$.

Then there exists a $c \in \mathbb{R}, c \neq 0$ such that f(x) = cg(x) for all $x \in \mathbb{R}$. Since $c \neq 0$,

$$g(x) = \frac{1}{c}f(x)$$

for all $x \in \mathbb{R}$ and $\frac{1}{c} \neq 0, \frac{1}{c} \in \mathbb{R}$.

Thus $(g, f) \in R$.

Hence, R is symmetric.

Suppose $(f, g) \in R$ and $(g, h) \in R$.

Then there exist non-zero $c, d \in \mathbb{R}$ such that f(x) = cg(x) and g(x) = dh(x) for all $x \in \mathbb{R}$. Hence, f(x) = cdh(x) for all $x \in \mathbb{R}$.

Since *c* and *d* are non-zero, *cd* is non-zero, and $cd \in \mathbb{R}$, so $(f, h) \in R$.

Thus, *R* is transitive, and so *R* is an equivalence relation. \blacksquare

(b) **Proof:** Suppose $g \in [f]$.

Then $(g, f) \in R$ so there exists a non-zero $c \in \mathbb{R}$ such that g(x) = cf(x) for all $x \in \mathbb{R}$.

Since *g* is non-constant, it has an *x*-intercepts; suppose g(z) = 0.

Then 0 = g(z) = cf(z), and since $c \neq 0$, f(z) = 0.

Hence, *g* and *f* have the same *x*-intercept.

Now, suppose g and f have the same x-intercept; suppose g(a) = f(a) = 0. Suppose $g(x) = m_1x + b_1$ and $f(x) = m_2x + b_2$. Then $m_1a + b_1 = 0$ and $m_2a + b_2 = 0$, so

$$a = -\frac{b_1}{m_1} = -\frac{b_2}{m_2},$$

so $b_1 = \frac{m_1 b_2}{m_2}$. Let $c = \frac{m_1}{m_2}$. Then $cf(x) = \frac{m_1}{m_2}(m_2 x + b_2) = m_1 x + b_2 \frac{m_1}{m_2} = m_1 x + b_1 = g(x)$ for all $x \in \mathbb{R}$. Hence $g \in [f]$.

- 3. Let A, B, and C be sets. *Prove that* $A \cup C \subseteq B \cup C$ *iff* $A \setminus C \subseteq B \setminus C$ *.* **Proof:** Suppose $A \cup C \subseteq B \cup C$. Suppose $x \in A \setminus C$. Then $x \in A$, so $x \in A \cup C$, and since $A \cup C \subseteq B \cup C$, $x \in B \cup C$. Since $x \in A \setminus C$, $x \notin C$. Since $x \in B \cup C$, but $x \notin C$, $x \in B$ and so $x \in B \setminus C$. Hence $A \setminus C \subseteq B \setminus C$. Now, suppose $A \setminus C \subseteq B \setminus C$. Suppose $x \in A \cup C$. If $x \in C$ then $x \in B \cup C$. Suppose $x \notin C$. Then $x \in A$ and so $x \in A \setminus C$. Since $A \setminus C \subseteq B \setminus C$, $x \in B \setminus C$, and so $x \in B$, and hence $x \in B \cup C$. Thus, $A \cup C \subseteq B \cup C$. 4. Let A and B be sets.
 - Let f and g be functions from A to B. *Prove that if* $f \cap g \neq \emptyset$ *, then* $f \setminus g$ *is not a function from* A *to* B*.* **Proof:** Suppose $f \cap q \neq \emptyset$. Then $\exists (a, b) \in f \cap g$. So $(a, b) \notin f \setminus g$. Suppose $\exists (a, c) \in f \setminus g$ for some $c \in B$. Then $(a, c) \in f$ and, since f is a function c = b, so $(a, b) \in f \setminus g$. This is a contradiction: $(a, b) \notin f \setminus g$. Hence, there does not exist an ordered pair $(a, c) \in f \setminus g$ for any $c \in B$. Therefore, $f \setminus g$ is not a function.
- 5. Let $n \in \mathbb{Z}_{>0}$.

Use induction to prove
$$\sum_{i=1}^{n} \frac{1}{(2i-1)(2i+1)} = \frac{n}{2n+1}$$
.
Proof: Let $P(n)$ be the statement " $\sum_{i=1}^{n} \frac{1}{(2i-1)(2i+1)} = \frac{n}{2n+1}$ ".
Since $\sum_{i=1}^{n} \frac{1}{2n-1} = \frac{1}{2n-1}$

m

$$\sum_{i=1}^{1} \frac{1}{(2i-1)(2i+1)} = \frac{1}{3} = \frac{1}{2(1)+1},$$

P(1) is true.

Suppose there exists a k > 0 such that P(k) is true.

Then

$$\sum_{i=1}^{k+1} \frac{1}{(2i-1)(2i+1)} = \sum_{i=1}^{k} \frac{1}{(2i-1)(2i+1)} + \frac{1}{(2(k+1)-1)(2(k+1)+1)}$$
$$= \frac{k}{2k+1} + \frac{1}{(2k+1)(2k+3)} \text{ (by the induction hypothesis)}$$
$$= \frac{k}{2k+1} + \frac{1}{(2k+1)(2k+3)}$$
$$= \frac{k(2k+3)+1}{(2k+1)(2k+3)}$$
$$= \frac{2k^2 + 3k + 1}{(2k+1)(2k+3)}$$
$$= \frac{(2k+1)(k+1)}{(2k+1)(2k+3)}$$
$$= \frac{k+1}{2k+3}$$

Hence P(k + 1) is true, so P(k) implies P(k + 1). Hence, by induction, P(k) is true for all k > 0.

6. Let n be an integer. Prove that $4|n^4 + 2n$ iff n is even.

Proof:

Suppose n is even.

Then n = 2m for some integer *m*, and

$$n^{4} + 2n = (2m)^{4} + 2(2m) = 16m^{4} + 4m = 4(4m^{4} + m)$$

and so $4|n^4 + 2n$.

Now suppose n is odd.

Then $n \equiv 1 \pmod{4}$ or $n \equiv 3 \pmod{4}$

If $n \equiv 1 \pmod{4}$, then $n^4 \equiv 1 \pmod{4}$ and $2n \equiv 2 \pmod{4}$ and so $n^4 + 2n \equiv 3 \pmod{4}$, in which case, 4 does not divide $n^4 + 2n$.

If $n \equiv 3 \pmod{4}$, then $n^4 \equiv 1 \pmod{4}$ and $2n \equiv 2 \pmod{4}$, and so $n^4 + 2n \equiv 3 \pmod{4}$, in which case 4 does not divide $n^4 + 2n$.

Thus, 4 divides $n^4 + 2n$ iff n is even.