Math 300 C - Winter 2013
 Final Exam
 June 13, 2013

Name: \qquad Student ID no. : \qquad

Signature: \qquad Section: \qquad

1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
Total	60	

- Complete all six questions.
- You have 110 minutes to complete the exam.

1. Suppose A, B, and C are sets with $A \cap B \subseteq C$. Prove that if $a \in B$, then $a \notin A \backslash C$.
2. Let S be the set of all functions from \mathbb{R} to \mathbb{R}.

Define a relation R on S by

$$
(f, g) \in R \Leftrightarrow \exists k \in \mathbb{R} \text { such that } f(x)=g(x) \forall x \geq k .
$$

Prove that R is an equivalence relation.
3. Using induction, prove that

$$
(1)+(1+2)+(1+2+3)+\cdots+(1+2+3+\cdots+n)=\frac{1}{6} n(n+1)(n+2)
$$

for all positive integers, n.
4. Suppose \mathcal{M}, \mathcal{N}, and \mathcal{P} are families of sets, with $\mathcal{M} \neq \varnothing, \mathcal{N} \neq \varnothing$, and $\mathcal{P} \neq \varnothing$.

Suppose that for every $A \in \mathcal{M}$ and $B \in \mathcal{N}, A \cup B \in \mathcal{P}$.
Prove that $\cap \mathcal{P} \subseteq(\cap \mathcal{M}) \cup(\cap \mathcal{N})$.
5. Let $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R}$ be defined by

$$
f(a, b)=(5 a+4 b, a-2 b)
$$

Prove that f is a bijection.
6. Prove that, for all $n \in \mathbb{Z}, 4 \mid 3 n^{2}+2 n+3$ iff n is odd.

Elementary Properties of Real Numbers

Suppose x, y, and z are real numbers. We will take as fact each of the following.

1. $x+y$ and $x y$ are real numbers. $(\mathbb{R}$ is closed under addition and multiplication.)
2. If $x=y$, then $x+z=y+z$ and $x z=y z$. (This is sometimes called substitution of equals.)
3. $x+y=y+x$ and $x y=y x$ (addition and multiplication are commutative in \mathbb{R})
4. $(x+y)+z=x+(y+z)$ and $(x y) z=x(y z)$ (addition and multiplication are associative in \mathbb{R})
5. $x(y+z)=x y+x z$ (This is the Distributive Law.)
6. $x+0=0+x=x$ and $x \cdot 1=1 \cdot x=x(0$ is the additive identity; 1 is the multiplicative identity.)
7. There exists a real number $-x$ such that $x+(-x)=(-x)+x=0$. (That is, every real number has an additive inverse in \mathbb{R}.)
8. If $x \neq 0$, then there exists a real number x^{-1} such that $x \cdot x^{-1}=x^{-1} \cdot x=1$. (That is, every non-zero real number has a multiplicative inverse in \mathbb{R}.)
9. If $x>0$ and $y>0$, then $x+y>0$ and $x y>0$.
10. Either $x>0,-x>0$, or $x=0$.
11. If x and y are integers, then $-x, x+y$, and $x y$ are integers. (The additive inverse of an integer is an integer and \mathbb{Z} is closed under addition and multiplication.)

NOTE: It is not hard to prove that \mathbb{Q}, the set of rational numbers is closed under addition and multiplication and that every non-zero rational number has a multiplicative inverse in \mathbb{Q}.

The following properties of real numbers that allow us to do algebra follow from the axioms on the front page.
If x, y, z, u, and v are real numbers, then:

1. $x \cdot 0=0$
2. If $x+z=y+z$, then $x=y$.
3. If $x \cdot z=y \cdot z$ and $z \neq 0$, then $x=y$.
4. $-x=(-1) \cdot x$
5. $(-x) \cdot y=-(x \cdot y)$
6. $(-x) \cdot(-y)=x \cdot y$
7. If $x \cdot y=0$, then $x=0$ or $y=0$.
8. If $x \leq y$ and $y \leq x$, then $x=y$.
9. If $x \leq y$ and $y \leq z$, then $x \leq z$.
10. At least one of the following is true: $x \leq$ y or $y \leq x$.
11. If $x \leq y$, then $x+z \leq y+z$.
12. If $x \leq y$ and $0 \leq z$, then $x z \leq y z$.
13. If $x \leq y$ and $z \leq 0$, then $y z \leq x z$.
14. If $x \leq y$ and $u \leq v$, then $x+u \leq y+v$.
15. If $0 \leq x \leq y$ and $0 \leq u \leq v$, then $x u \leq y v$.
16. If $x \leq y$, then $-y \leq-x$.
17. $0 \leq x^{2}$
18. $0<1$
19. If $0<x$, then $0<x^{-1}$.
20. If $0<x<y$, then $0<y^{-1}<x^{-1}$.

And here are a couple of properties of integers.
21. Every integer is either even or odd, never both.
22. The only integers that divide 1 are -1 and 1.

