Math 300 C - Winter 2013 Final Exam June 13, 2013 Answers

1. Suppose A, B, and C are sets with $A \cap B \subseteq C$. Prove that if $a \in B$, then $a \notin A \setminus C$. **Proof:**

Suppose $a \in B$. Suppose $a \in A \setminus C$. Then $a \in A$ and $a \notin C$. Since $a \in A, a \in A \cap B$. Since $A \cap B \subseteq C, a \in C$. This is contradicts our earlier conclusion that $a \notin C$. Hence, we conclude that $a \notin A \setminus C$.

2. Let S be the set of all functions from \mathbb{R} to \mathbb{R} . Define a relation R on S by

 $(f,g) \in R \Leftrightarrow \exists k \in \mathbb{R} \text{ such that } f(x) = g(x) \, \forall x \ge k.$

```
Prove that R is an equivalence relation.
```

Proof: Suppose $f \in S$.

Let k = 0 (this is arbitrary: any real number works here).

Since f(x) = f(x) for all $x \ge k$, $(f, f) \in R$.

So R is reflexive.

Suppose $(f,g) \in R$.

Then there exists a $k \in \mathbb{R}$ such that f(x) = g(x) for all $x \ge k$.

So g(x) = f(x) for all $x \ge k$, and hence $(g, f) \in R$.

So R is symmetric.

Suppose $(f,g) \in R$ and $(g,h) \in R$.

Then there exists a $k \in \mathbb{R}$ such that f(x) = g(x) for all $x \ge k$, and there exists a $j \in \mathbb{R}$ such that g(x) = h(x) for all $x \ge m$.

Let m equal the maximum of k and j.

Suppose $x \ge m$.

Then $x \ge k$ and $x \ge j$.

Hence f(x) = g(x) and g(x) = h(x), so f(x) = h(x).

Thus f(x) = h(x) for all $x \ge m$, so $(f, h) \in R$.

Thus *R* is transitive, and so *R* is an equivalence relation. \blacksquare

3. Using induction, prove that

$$(1) + (1+2) + (1+2+3) + \dots + (1+2+3+\dots+n) = \frac{1}{6}n(n+1)(n+2)$$

for all positive integers, n.

Proof: Let P(n) be the statement

"(1) + (1 + 2) + (1 + 2 + 3) + ... + (1 + 2 + 3 + ... + n) =
$$\frac{1}{6}n(n+1)(n+2)$$
".

Since $1 = \frac{1}{6}(1)(1+1)(1+2)$, P(1) is true.

Suppose that there exists a $k\geq 1$ such that P(k) is true. Then

$$(1) + (1+2) + (1+2+3) + \dots + (1+2+3+\dots+k) + (1+2+3+\dots+k+(k+1))$$

= $\frac{1}{6}k(k+1)(k+2) + (1+2+3+\dots+k+(k+1))$ (by our induction hypothesis)

In class, we showed that $1 + 2 + 3 + \dots + k = \frac{1}{2}k(k+1)$, so we have

$$\frac{1}{6}k(k+1)(k+2) + (1+2+3+\dots+k+(k+1)) = \frac{1}{6}k(k+1)(k+2) + \frac{1}{2}(k+1)(k+2) = \frac{1}{6}(k+1)(k+2)(k+3).$$

Hence P(k+1) is true.

Thus P(k) implies P(k + 1), and so, by induction, P(n) is true for all $n \ge 0$.

4. Suppose \mathcal{M}, \mathcal{N} , and \mathcal{P} are families of sets, with $\mathcal{M} \neq \emptyset$, $\mathcal{N} \neq \emptyset$, and $\mathcal{P} \neq \emptyset$. Suppose that for every $A \in \mathcal{M}$ and $B \in \mathcal{N}$, $A \cup B \in \mathcal{P}$. *Prove that* $\cap \mathcal{P} \subseteq (\cap \mathcal{M}) \cup (\cap \mathcal{N})$ *.* **Proof:** Suppose $x \in \cap \mathcal{P}$. So $x \in C$ for all $C \in \mathcal{P}$. Suppose $x \notin \cap \mathcal{M}$. Then $x \notin A$ for some $A \in \mathcal{M}$. Suppose there exists a $B \in \mathcal{N}$ such that $x \notin B$. Now, $A \cup B \in P$, so $x \in A \cup B$, and, since $x \notin B$, $x \in A$. But $x \notin A$, so this is a contradiction. Hence, there does not exist a $B \in \mathcal{N}$ such that $x \notin B$. That is, $x \in B$ for all $B \in \mathcal{N}$. Hence, $x \in \cap \mathcal{N}$. Thus $x \notin \cap \mathcal{M}$ implies $x \in \cap \mathcal{N}$, and so $x \in (\cap \mathcal{M}) \cup (\cap \mathcal{N})$. Hence, $x \in \cap \mathcal{P}$ implies $x \in (\cap \mathcal{M}) \cup (\cap \mathcal{N})$. Therefore, $\cap \mathcal{P} \subseteq (\cap \mathcal{M}) \cup (\cap \mathcal{N})$.

5. Let $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ be defined by

$$f(a,b) = (5a + 4b, a - 2b).$$

Prove that f is a bijection.

Proof: Suppose $f(a_1, b_1) = f(a_2, b_2)$. Then

$$5a_1 + 4b_1 = 5a_2 + 4b_2$$

and

$$a_1 - 2b_1 = a_2 - 2b_2.$$

From the second equation, we have

$$2a_1 - 4b_1 = 2a_2 - 4b_2,$$

which, when added to the first equation yields

$$7a_1 = 7a_2$$

from which we conclude that $a_1 = a_2$.

The first equation then yields

$$4b_1 = 4b_2$$

so $b_1 = b_2$. Thus, $(a_1, b_1) = (a_2, b_2)$, so *f* is one-to-one. Let $(a, b) \in \mathbb{R} \times \mathbb{R}$. Let $x = \frac{1}{7}(a+2b)$ and $y = \frac{1}{14}(a-5b)$. Then

$$f(x,y) = (5x+4y, x-2y) = \left(\frac{5}{7}(a+2b) + \frac{4}{14}(a-5b), \frac{1}{7}(a+2b) - \frac{2}{14}(a-5b)\right)$$
$$= (a,b).$$

Thus, *f* is onto, so *f* is a bijection. \blacksquare

6. Prove that, for all $n \in \mathbb{Z}$, $4|3n^2 + 2n + 3$ iff n is odd.

Proof: Suppose *n* is odd.

Then n = 2m + 1 for some $m \in \mathbb{Z}$. Then

$$\begin{split} 3n^2 + 2n + 3 &= 3(2m+1)^2 + 2(2m+1) + 3 = 3(4m^2 + 4m + 1) + 4m + 5 \\ &= 12m^2 + 12m + 3 + 4m + 5 \\ &\equiv 0 \, (\mathrm{mod} 4). \end{split}$$

In other words, $4|3n^2 + 2n + 3$.

Now, suppose *n* is even. So n = 2m for some $m \in \mathbb{Z}$. Then

$$3n^2 + 2n + 3 = 3(2m)^2 + 2(2m) + 3$$

= $12m^2 + 4m + 3$
 $\equiv 3 \pmod{4}.$

Since $3 \neq 0 \pmod{4}$, 4 does not divide $3n^2 + 2n + 3$.

Thus, $4|3n^2 + 2n + 3$ iff *n* is odd.