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1. Suppose A, B, and C are sets with A ∩B ⊆ C. Prove that if a ∈ B, then a 6∈ A \ C.

Proof:

Suppose a ∈ B.

Suppose a ∈ A \ C.

Then a ∈ A and a 6∈ C.

Since a ∈ A, a ∈ A ∩B.

Since A ∩B ⊆ C, a ∈ C.

This is contradicts our earlier conclusion that a 6∈ C.

Hence, we conclude that a 6∈ A \ C. �

2. Let S be the set of all functions from R to R.

Define a relation R on S by

(f, g) ∈ R⇔ ∃k ∈ R such that f(x) = g(x) ∀x ≥ k.

Prove that R is an equivalence relation.

Proof: Suppose f ∈ S.

Let k = 0 (this is arbitrary: any real number works here).

Since f(x) = f(x) for all x ≥ k, (f, f) ∈ R.

So R is reflexive.

Suppose (f, g) ∈ R.

Then there exists a k ∈ R such that f(x) = g(x) for all x ≥ k.

So g(x) = f(x) for all x ≥ k, and hence (g, f) ∈ R.

So R is symmetric.

Suppose (f, g) ∈ R and (g, h) ∈ R.

Then there exists a k ∈ R such that f(x) = g(x) for all x ≥ k, and there exists a j ∈ R such that
g(x) = h(x) for all x ≥ m.

Let m equal the maximum of k and j.

Suppose x ≥ m.

Then x ≥ k and x ≥ j.

Hence f(x) = g(x) and g(x) = h(x), so f(x) = h(x).

Thus f(x) = h(x) for all x ≥ m, so (f, h) ∈ R.

Thus R is transitive, and so R is an equivalence relation. �



3. Using induction, prove that

(1) + (1 + 2) + (1 + 2 + 3) + · · ·+ (1 + 2 + 3 + · · ·+ n) =
1

6
n(n+ 1)(n+ 2)

for all positive integers, n.

Proof: Let P (n) be the statement

“(1) + (1 + 2) + (1 + 2 + 3) + · · ·+ (1 + 2 + 3 + · · ·+ n) =
1

6
n(n+ 1)(n+ 2)”.

Since 1 = 1
6(1)(1 + 1)(1 + 2), P (1) is true.

Suppose that there exists a k ≥ 1 such that P (k) is true.

Then

(1) + (1 + 2) + (1 + 2 + 3) + · · ·+ (1 + 2 + 3 + · · ·+ k) + (1 + 2 + 3 + · · ·+ k + (k + 1))

=
1

6
k(k + 1)(k + 2) + (1 + 2 + 3 + · · ·+ k + (k + 1)) (by our induction hypothesis)

In class, we showed that 1 + 2 + 3 + · · ·+ k = 1
2k(k + 1), so we have

1

6
k(k + 1)(k + 2) + (1 + 2 + 3 + · · ·+ k + (k + 1)) =

1

6
k(k + 1)(k + 2) +

1

2
(k + 1)(k + 2) =

1

6
(k + 1)(k + 2)(k + 3).

Hence P (k + 1) is true.

Thus P (k) implies P (k + 1), and so, by induction, P (n) is true for all n ≥ 0. �



4. SupposeM,N , and P are families of sets, withM 6= ∅, N 6= ∅, and P 6= ∅.

Suppose that for every A ∈M and B ∈ N , A ∪B ∈ P .

Prove that ∩P ⊆ (∩M) ∪ (∩N ).

Proof: Suppose x ∈ ∩P .

So x ∈ C for all C ∈ P .

Suppose x 6∈ ∩M.

Then x 6∈ A for some A ∈M.

Suppose there exists a B ∈ N such that x 6∈ B.

Now, A ∪B ∈ P , so x ∈ A ∪B, and, since x 6∈ B, x ∈ A.

But x 6∈ A, so this is a contradiction.

Hence, there does not exist a B ∈ N such that x 6∈ B.

That is, x ∈ B for all B ∈ N .

Hence, x ∈ ∩N .

Thus x 6∈ ∩M implies x ∈ ∩N , and so x ∈ (∩M) ∪ (∩N ).

Hence, x ∈ ∩P implies x ∈ (∩M) ∪ (∩N ).

Therefore, ∩P ⊆ (∩M) ∪ (∩N ). �



5. Let f : R× R→ R× R be defined by

f(a, b) = (5a+ 4b, a− 2b).

Prove that f is a bijection.

Proof: Suppose f(a1, b1) = f(a2, b2).

Then
5a1 + 4b1 = 5a2 + 4b2

and
a1 − 2b1 = a2 − 2b2.

From the second equation, we have

2a1 − 4b1 = 2a2 − 4b2,

which, when added to the first equation yields

7a1 = 7a2

from which we conclude that a1 = a2.

The first equation then yields
4b1 = 4b2

so b1 = b2.

Thus, (a1, b1) = (a2, b2), so f is one-to-one.

Let (a, b) ∈ R× R.

Let x = 1
7(a+ 2b) and y = 1

14(a− 5b).

Then

f(x, y) = (5x+ 4y, x− 2y) =

(
5

7
(a+ 2b) +

4

14
(a− 5b),

1

7
(a+ 2b)− 2

14
(a− 5b)

)
= (a, b).

Thus, f is onto, so f is a bijection. �

6. Prove that, for all n ∈ Z, 4|3n2 + 2n+ 3 iff n is odd.

Proof: Suppose n is odd.

Then n = 2m+ 1 for some m ∈ Z.

Then

3n2 + 2n+ 3 = 3(2m+ 1)2 + 2(2m+ 1) + 3 = 3(4m2 + 4m+ 1) + 4m+ 5

= 12m2 + 12m+ 3 + 4m+ 5

≡ 0 (mod4).

In other words, 4|3n2 + 2n+ 3.

Now, suppose n is even. So n = 2m for some m ∈ Z.

Then

3n2 + 2n+ 3 = 3(2m)2 + 2(2m) + 3

= 12m2 + 4m+ 3

≡ 3 (mod4).

Since 3 6≡ 0 (mod4), 4 does not divide 3n2 + 2n+ 3.

Thus, 4|3n2 + 2n+ 3 iff n is odd. �


