Math 300 C - Winter 2013

Final Exam
June 13, 2013
Answers

1. Suppose A, B, and C are sets with $A \cap B \subseteq C$. Prove that if $a \in B$, then $a \notin A \backslash C$.

Proof:
Suppose $a \in B$.
Suppose $a \in A \backslash C$.
Then $a \in A$ and $a \notin C$.
Since $a \in A, a \in A \cap B$.
Since $A \cap B \subseteq C, a \in C$.
This is contradicts our earlier conclusion that $a \notin C$.
Hence, we conclude that $a \notin A \backslash C$.
2. Let S be the set of all functions from \mathbb{R} to \mathbb{R}.

Define a relation R on S by

$$
(f, g) \in R \Leftrightarrow \exists k \in \mathbb{R} \text { such that } f(x)=g(x) \forall x \geq k .
$$

Prove that R is an equivalence relation.
Proof: Suppose $f \in S$.
Let $k=0$ (this is arbitrary: any real number works here).
Since $f(x)=f(x)$ for all $x \geq k,(f, f) \in R$.
So R is reflexive.
Suppose $(f, g) \in R$.
Then there exists a $k \in \mathbb{R}$ such that $f(x)=g(x)$ for all $x \geq k$.
So $g(x)=f(x)$ for all $x \geq k$, and hence $(g, f) \in R$.
So R is symmetric.
Suppose $(f, g) \in R$ and $(g, h) \in R$.
Then there exists a $k \in \mathbb{R}$ such that $f(x)=g(x)$ for all $x \geq k$, and there exists a $j \in \mathbb{R}$ such that $g(x)=h(x)$ for all $x \geq m$.
Let m equal the maximum of k and j.
Suppose $x \geq m$.
Then $x \geq k$ and $x \geq j$.
Hence $f(x)=g(x)$ and $g(x)=h(x)$, so $f(x)=h(x)$.
Thus $f(x)=h(x)$ for all $x \geq m$, so $(f, h) \in R$.
Thus R is transitive, and so R is an equivalence relation.
3. Using induction, prove that

$$
(1)+(1+2)+(1+2+3)+\cdots+(1+2+3+\cdots+n)=\frac{1}{6} n(n+1)(n+2)
$$

for all positive integers, n.
Proof: Let $P(n)$ be the statement

$$
"(1)+(1+2)+(1+2+3)+\cdots+(1+2+3+\cdots+n)=\frac{1}{6} n(n+1)(n+2) " .
$$

Since $1=\frac{1}{6}(1)(1+1)(1+2), P(1)$ is true.
Suppose that there exists a $k \geq 1$ such that $P(k)$ is true.
Then

$$
\begin{aligned}
& (1)+(1+2)+(1+2+3)+\cdots+(1+2+3+\cdots+k)+(1+2+3+\cdots+k+(k+1)) \\
& =\frac{1}{6} k(k+1)(k+2)+(1+2+3+\cdots+k+(k+1)) \text { (by our induction hypothesis) }
\end{aligned}
$$

In class, we showed that $1+2+3+\cdots+k=\frac{1}{2} k(k+1)$, so we have

$$
\begin{array}{r}
\frac{1}{6} k(k+1)(k+2)+(1+2+3+\cdots+k+(k+1))= \\
\frac{1}{6} k(k+1)(k+2)+\frac{1}{2}(k+1)(k+2)= \\
\frac{1}{6}(k+1)(k+2)(k+3)
\end{array}
$$

Hence $P(k+1)$ is true.
Thus $P(k)$ implies $P(k+1)$, and so, by induction, $P(n)$ is true for all $n \geq 0$.
4. Suppose \mathcal{M}, \mathcal{N}, and \mathcal{P} are families of sets, with $\mathcal{M} \neq \varnothing, \mathcal{N} \neq \varnothing$, and $\mathcal{P} \neq \varnothing$.

Suppose that for every $A \in \mathcal{M}$ and $B \in \mathcal{N}, A \cup B \in \mathcal{P}$.
Prove that $\cap \mathcal{P} \subseteq(\cap \mathcal{M}) \cup(\cap \mathcal{N})$.
Proof: Suppose $x \in \cap \mathcal{P}$.
So $x \in C$ for all $C \in \mathcal{P}$.
Suppose $x \notin \cap \mathcal{M}$.
Then $x \notin A$ for some $A \in \mathcal{M}$.
Suppose there exists a $B \in \mathcal{N}$ such that $x \notin B$.
Now, $A \cup B \in P$, so $x \in A \cup B$, and, since $x \notin B, x \in A$.
But $x \notin A$, so this is a contradiction.
Hence, there does not exist a $B \in \mathcal{N}$ such that $x \notin B$.
That is, $x \in B$ for all $B \in \mathcal{N}$.
Hence, $x \in \cap \mathcal{N}$.
Thus $x \notin \cap \mathcal{M}$ implies $x \in \cap \mathcal{N}$, and so $x \in(\cap \mathcal{M}) \cup(\cap \mathcal{N})$.
Hence, $x \in \cap \mathcal{P}$ implies $x \in(\cap \mathcal{M}) \cup(\cap \mathcal{N})$.
Therefore, $\cap \mathcal{P} \subseteq(\cap \mathcal{M}) \cup(\cap \mathcal{N})$.
5. Let $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R}$ be defined by

$$
f(a, b)=(5 a+4 b, a-2 b) .
$$

Prove that f is a bijection.
Proof: Suppose $f\left(a_{1}, b_{1}\right)=f\left(a_{2}, b_{2}\right)$.
Then

$$
5 a_{1}+4 b_{1}=5 a_{2}+4 b_{2}
$$

and

$$
a_{1}-2 b_{1}=a_{2}-2 b_{2}
$$

From the second equation, we have

$$
2 a_{1}-4 b_{1}=2 a_{2}-4 b_{2},
$$

which, when added to the first equation yields

$$
7 a_{1}=7 a_{2}
$$

from which we conclude that $a_{1}=a_{2}$.
The first equation then yields

$$
4 b_{1}=4 b_{2}
$$

so $b_{1}=b_{2}$.
Thus, $\left(a_{1}, b_{1}\right)=\left(a_{2}, b_{2}\right)$, so f is one-to-one.
Let $(a, b) \in \mathbb{R} \times \mathbb{R}$.
Let $x=\frac{1}{7}(a+2 b)$ and $y=\frac{1}{14}(a-5 b)$.
Then

$$
\begin{aligned}
f(x, y)=(5 x+4 y, x-2 y) & =\left(\frac{5}{7}(a+2 b)+\frac{4}{14}(a-5 b), \frac{1}{7}(a+2 b)-\frac{2}{14}(a-5 b)\right) \\
& =(a, b)
\end{aligned}
$$

Thus, f is onto, so f is a bijection.
6. Prove that, for all $n \in \mathbb{Z}, 4 \mid 3 n^{2}+2 n+3$ iff n is odd.

Proof: Suppose n is odd.
Then $n=2 m+1$ for some $m \in \mathbb{Z}$.
Then

$$
\begin{aligned}
3 n^{2}+2 n+3=3(2 m+1)^{2}+2(2 m+1)+3 & =3\left(4 m^{2}+4 m+1\right)+4 m+5 \\
& =12 m^{2}+12 m+3+4 m+5 \\
& \equiv 0(\bmod 4) .
\end{aligned}
$$

In other words, $4 \mid 3 n^{2}+2 n+3$.
Now, suppose n is even. So $n=2 m$ for some $m \in \mathbb{Z}$.
Then

$$
\begin{aligned}
3 n^{2}+2 n+3 & =3(2 m)^{2}+2(2 m)+3 \\
& =12 m^{2}+4 m+3 \\
& \equiv 3(\bmod 4) .
\end{aligned}
$$

Since $3 \not \equiv 0(\bmod 4), 4$ does not divide $3 n^{2}+2 n+3$.
Thus, $4 \mid 3 n^{2}+2 n+3$ iff n is odd.

