Math 300 C - Spring 2015
 Final Exam
 June 11, 2015

Name: \qquad Student ID no. : \qquad

Signature: \qquad

1	10	
2	10	
3	10	
4	15	
5	10	
6	10	
Total	65	

- Complete all 6 questions.
- You have 110 minutes to complete the exam.

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$ be a bijection. Define $g: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$ by

$$
g(x)=f(x)^{2}
$$

for all $x \in \mathbb{R}$.
Prove that g is a bijection.
2. Use induction to prove that, for all positive integers n,

$$
\sum_{j=1}^{n}\left(j^{2}+1\right) j!=n(n+1)!
$$

3. On $\mathbb{Z} \times \mathbb{Z}$, define a relation R by

$$
((a, b),(c, d)) \in R \text { iff } a+d=b+c
$$

Prove that R is an equivalence relation.
4. Let A, B and C be sets.

Suppose $f: A \rightarrow B, g: B \rightarrow C$ and $h: B \rightarrow C$.
(a) Prove that if f is onto and $g \circ f=h \circ f$, then $g(x)=h(x)$ for all $x \in B$.
(b) Suppose $g \circ f$ is one-to-one. Is f necessarily one-to-one? Is g necessarily one-to-one? Prove your answers.
5. Let \mathcal{F} and \mathcal{G} be families of sets.
(a) Prove that

$$
\cup \mathcal{F} \backslash \cup \mathcal{G} \subseteq \cup(\mathcal{F} \backslash \mathcal{G})
$$

(b) Give an example of non-empty families \mathcal{F} and \mathcal{G} such that

$$
\cup \mathcal{F} \backslash \cup \mathcal{G} \neq \cup(\mathcal{F} \backslash \mathcal{G})
$$

Prove that your example is valid.
6. A positive integer n is called a triangular number if

$$
n=\frac{1}{2} k(k+1)
$$

for some positive integer k.
The smallest ones are $1,3,6,10,15$.
Show that there are infinitely many positive integers that are not are the sum of two triangular numbers (hint: consider the situation modulo 9).

Axioms of the Integers (AIs)
Suppose a, b, and c are integers.

- Closure:
$a+b$ and $a b$ are integers.
- Substitution of Equals:

If $a=b$, then $a+c=b+c$ and $a c=b c$.

- Commutativity:
$a+b=b+a$ and $a b=b a$.

- Associativity:

$(a+b)+c=a+(b+c)$ and $(a b) c=$ $a(b c)$.

- The Distributive Law:

$a(b+c)=a b+a c$

- Identities:

$a+0=0+a=a$ and $a \cdot 1=1 \cdot a=a$ 0 is called the additive identity
1 is called the multiplicative identity.

- Additive Inverses:

There exists an integer $-a$ such that $a+(-a)=(-a)+a=0$.

- Trichotomy:

Exactly one of the following is true: $a<0,-a<0$, or $a=0$.

Sets

$A \subseteq B$ iff $x \in A$ implies $x \in B$ $A=B$ iff $A \subseteq B$ and $B \subseteq A$ $x \in A \cup B$ iff $x \in A$ or $x \in B$ $x \in A \cap B$ iff $x \in A$ and $x \in B$ $x \in A \backslash B$ iff $x \in A$ and $x \notin B$ $\mathcal{P}(A)$ is the set of all subsets of a set A

Elementary Properties of the Integers (EPIs)
Suppose a, b, c, and d are integers.

1. $a \cdot 0=0$
2. If $a+c=b+c$, then $a=b$.
3. $-a=(-1) \cdot a$
4. $(-a) \cdot b=-(a \cdot b)$
5. $(-a) \cdot(-b)=a \cdot b$
6. If $a \cdot b=0$, then $a=0$ or $b=0$.
7. If $a \leq b$ and $b \leq a$, then $a=b$.
8. If $a<b$ and $b<c$, then $a<c$.
9. If $a<b$, then $a+c<b+c$.
10. If $a<b$ and $0<c$, then $a c<b c$.
11. If $a<b$ and $c<0$, then $b c<a c$.
12. If $a<b$ and $c<d$, then $a+c<b+d$.
13. If $0 \leq a<b$ and $0 \leq c<d$, then $a c<b d$.
14. If $a<b$, then $-b<-a$.
15. $0 \leq a^{2}$
16. If $a b=1$, then either $a=b=1$ or $a=b=$ -1 .

NOTE: Properties 8 -14 hold if each $<$ is replaced with \leq.
One theorem for reference:
Theorem DAS (Divisors are Smaller): Let a and b be positive integers. Then $a \mid b$ implies $a \leq b$.

