Math 300 C - Spring 2015 Final Exam June 11, 2015 Answers

1. Let $f : \mathbb{R} \to \mathbb{R}_{\geq 0}$ be a bijection. Define $g : \mathbb{R} \to \mathbb{R}_{\geq 0}$ by

$$g(x) = f(x)^2$$

for all $x \in \mathbb{R}$. Prove that g is a bijection. Suppose $g(x_1) = g(x_2)$ for some $x_1, x_2 \in \mathbb{R}$. Then $f(x_1)^2 = f(x_2)^2$. Then $f(x_1) = f(x_2)$ since $f(x) \ge 0$ for all $x \in \mathbb{R}$. Since f is one-to-one, $x_1 = x_2$. Thus, $g(x_1) = g(x_2)$ implies $x_1 = x_2$, so g is one-to-one.

Let $y \in \mathbb{R}_{\geq 0}$. Let $z = \sqrt{y}$. Then $z \in \mathbb{R}_{\geq 0}$. Then, since f is onto, $\exists \hat{x} \in \mathbb{R}$ such that $f(\hat{x}) = z$. Then $g(\hat{x}) = (f(\hat{x}))^2 = z^2 = (\sqrt{y})^2 = y$. Hence, for all $y \in \mathbb{R}_{\geq 0}$, $\exists x \in \mathbb{R}$ such that g(x) = y. Thus, g is onto.

Therefore, g is one-to-one and onto, and so g is a bijection.

2. Use induction to prove that, for all positive integers n,

$$\sum_{j=1}^{n} (j^2 + 1)j! = n(n+1)!$$

Let $P(n) = "\sum_{j=1}^{n} (j^2 + 1)j! = n(n+1)!"$. Base case. Let n = 1.

Then

$$\sum_{j=1}^{n} (j^2 + 1)j! = \sum_{j=1}^{1} (j^2 + 1)j! = (1^2 + 1)(1!) = 2$$

while

$$n(n+1)! = 1(1+1)! = 2$$

so P(1) is true.

Induction step. Suppose P(n) is true for some $n = x \ge 1$.

Then P(x) is true.

Then

$$\sum_{j=1}^{x+1} (j^2 + 1)j! = \sum_{j=1}^{x} (j^2 + 1)j! + ((x+1)^2 + 1)((x+1)!)$$

= $x(x+1)! = (x^2 + 2x + 2)(x+1)!$
= $(x+1)!(x^2 + 3x + 2)$
= $(x+1)!(x+2)(x+1)$
= $(x+1)(x+2)! = (x+1)((x+1)+1)!$

so P(x+1) is true.

Hence, P(x) implies P(x + 1).

Then, since P(1) is true, by induction P(n) is true for all $n \ge 1$.

3. On $\mathbb{Z} \times \mathbb{Z}$, define a relation *R* by

$$((a, b), (c, d)) \in R \text{ iff } a + d = b + c.$$

Prove that *R* is an equivalence relation. Reflexive? Let $(x, y) \in \mathbb{Z} \times \mathbb{Z}$. Then x + y = y + x, so $((x, y), (x, y)) \in R$. So *R* is reflexive. Symmetric? Suppose $((x_1, y_1), (x_2, y_2)) \in R$. Then $x_1 + y_2 = y_1 + x_2$ and so $x_2 + y_1 = y_2 + x_1$, and so $((x_2, y_2), (x_1, y_1)) \in R$. So *R* is symmetric. Transitive? Suppose $((x_1, y_1), (x_2, y_2)) \in R$ and $((x_2, y_2), (x_3, y_3)) \in R$. Then $x_1 + y_2 = y_1 + x_2$ and $x_2 + y_3 = y_2 + x_3$. Summing, we have $x_1 + y_2 + x_2 + y_3 = y_1 + x_2 + y_2 + x_3$. Subtracting $x_2 + y_2$ from both sides, we get

$$x_1 + y_3 = y_1 + x_2$$

and hence $((x_1, y_1), (x_3, y_3)) \in R$. So *R* is transitive.

Thus, *R* is reflexive, symmetric and transitive, so *R* is an equivalence relation.

4. Let A, B and C be sets. Suppose $f : A \rightarrow B$, $g : B \rightarrow C$ and $h : B \rightarrow C$.

- (a) Prove that if f is onto and g ∘ f = h ∘ f, then g(x) = h(x) for all x ∈ B. Suppose x ∈ B. Then ∃a ∈ A such that f(a) = x since f is onto. Then g(f(a)) = h(f(a)) since g ∘ f = h ∘ f. Hence, g(x) = h(x). Thus, for all x in B, g(x) = h(x). ■
- (b) Suppose g ∘ f is one-to-one. Is f necessarily one-to-one? Is g necessarily one-to-one? Prove your answers.
 Suppose f is not one-to-one.
 Then there exist x₁, x₂ ∈ A such that f(x₁) = f(x₂) and x₁ ≠ x₂.
 Then g(f(x₁)) = g(f(x₂)) by x₁ ≠ x₂.
 Hence, g ∘ f is not one-to-one.
 This contradicts the assumption that g ∘ f is one-to-one.
 Hence, the assumption that f is not one-to-one is false.
 Thus f is one-to-one.

The function g need not be one-to-one. Let $A = \{a\}$, $B = \{b_1, b_2\}$ and $C = \{c\}$. Define $f = \{(a, b_1)\}$, $g = \{(b_1, c), (b_2, c)\}$. Then $g \circ f = \{(a, c)\}$ so $g \circ f$ is one-to-one, but g is not.

- 5. Let \mathcal{F} and \mathcal{G} be families of sets.
 - (a) *Prove that*

$$\cup \mathcal{F} \setminus \cup \mathcal{G} \subseteq \cup (\mathcal{F} \setminus \mathcal{G}).$$

```
Suppose x \in \cup \mathcal{F} \setminus \cup \mathcal{G}.
So x \in \cup \mathcal{F} and x \notin \cup \mathcal{G}.
Then \exists A \in \mathcal{F} such that x \in A.
Suppose A \in \mathcal{G}.
Then x \in \cup \mathcal{G}.
This contradicts x \notin \cup \mathcal{G}
Hence, A \notin \mathcal{G}.
Thus, A \in \mathcal{F} \setminus \mathcal{G}, and so x \in \cup (\mathcal{F} \setminus \mathcal{G}).
Therefore, x \in \cup \mathcal{F} \setminus \cup \mathcal{G} implies x \in \cup (\mathcal{F} \setminus \mathcal{G}), and so \cup \mathcal{F} \setminus \cup \mathcal{G} \subseteq (\mathcal{F} \setminus \mathcal{G}).
```

(b) Give an example of non-empty families \mathcal{F} and \mathcal{G} such that

 $\cup \mathcal{F} \setminus \cup \mathcal{G} \neq \cup (\mathcal{F} \setminus \mathcal{G}).$

Prove that your example is valid. Let $\mathcal{F} = \{\{1, 2\}, \{2, 3\}\}$ and $\mathcal{G} = \{\{2\}\}$. Then $\mathcal{F} \setminus \mathcal{G} = \mathcal{F}$ and $\cup (\mathcal{F} \setminus \mathcal{G}) = \{1, 2, 3\}$, while

$$\cup \mathcal{F} = \{1, 2, 3\}, \text{ and } \cup \mathcal{G} = \{2\},\$$

so $\cup \mathcal{F} \setminus \cup \mathcal{G} = \{1, 3\} \neq \cup (\mathcal{F} \setminus \mathcal{G}). \blacksquare$

6. A positive integer n is called a triangular number if

$$n = \frac{1}{2}k(k+1)$$

for some positive integer k.

The smallest ones are 1, 3, 6, 10, 15.

Show that there are infinitely many positive integers that are not are the sum of two triangular numbers (hint: consider the situation modulo 9).

First, we note that if k = r + 9m for some integers k, r and m, then

$$\frac{1}{2}k(k+1) = \frac{1}{2}r(r+1) + 9mr + 9\left(\frac{m(9m+1)}{2}\right).$$

If *m* is even, then $\frac{m(9m+1)}{2}$ is an integer, since $2 \mid m$, while if *m* is odd, then 9m + 1 is even, and so $\frac{m(9m+1)}{2}$ is an integer.

Hence, $\frac{1}{2}k(k+1) \equiv \frac{1}{2}r(r+1) \pmod{9}$.

Thus, we make the following table:

k	$\frac{1}{2}k(k+1)$ reduced mod 9				
0	0				
1	1				
2	3				
3	6				
4	1				
5	6				
6	3				
$\overline{7}$	1				
8	0				

and conclude that all triangular numbers are congruent to 0, 1, 3 or $6 \mod 9$.

Hence, summing two triangular numbers involves only the following cases, summing pair-wise mod 9:

	0	1	3	6
0	0	1	3	6
1	1	2	4	7
3	3	4	6	0
6	6	7	0	3

So we see that the sum of two triangular numbers must be congruent to 0, 1, 2, 3, 4, 6 or 7 mod 9.

This leaves out 5 (and 8).

So, any positive integer congruent to 5 mod 9 is not the sum of two triangular numbers.

Since all numbers of the form 5 + 9k are congruent to $5 \mod 9$, and we can choose k to be any of the infinite set of positive integers, we conclude that there are infinitely many positive integers that are not the sum of two triangular numbers.