Math 300 C - Spring 2015
 Final Exam
 June 11, 2015
 Answers

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$ be a bijection. Define $g: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$ by

$$
g(x)=f(x)^{2}
$$

for all $x \in \mathbb{R}$.
Prove that g is a bijection.
Suppose $g\left(x_{1}\right)=g\left(x_{2}\right)$ for some $x_{1}, x_{2} \in \mathbb{R}$.
Then $f\left(x_{1}\right)^{2}=f\left(x_{2}\right)^{2}$.
Then $f\left(x_{1}\right)=f\left(x_{2}\right)$ since $f(x) \geq 0$ for all $x \in \mathbb{R}$.
Since f is one-to-one, $x_{1}=x_{2}$.
Thus, $g\left(x_{1}\right)=g\left(x_{2}\right)$ implies $x_{1}=x_{2}$, so g is one-to-one.

Let $y \in \mathbb{R}_{\geq 0}$.
Let $z=\sqrt{y}$. Then $z \in \mathbb{R}_{\geq 0}$.
Then, since f is onto, $\exists \hat{x} \in \mathbb{R}$ such that $f(\hat{x})=z$.
Then $g(\hat{x})=(f(\hat{x}))^{2}=z^{2}=(\sqrt{y})^{2}=y$.
Hence, for all $y \in \mathbb{R}_{\geq 0}, \exists x \in \mathbb{R}$ such that $g(x)=y$.
Thus, g is onto.
Therefore, g is one-to-one and onto, and so g is a bijection.
2. Use induction to prove that, for all positive integers n,

$$
\sum_{j=1}^{n}\left(j^{2}+1\right) j!=n(n+1)!
$$

Let $P(n)=" \sum_{j=1}^{n}\left(j^{2}+1\right) j!=n(n+1)!$ ".
Base case. Let $n=1$.
Then

$$
\sum_{j=1}^{n}\left(j^{2}+1\right) j!=\sum_{j=1}^{1}\left(j^{2}+1\right) j!=\left(1^{2}+1\right)(1!)=2
$$

while

$$
n(n+1)!=1(1+1)!=2
$$

so $P(1)$ is true.
Induction step. Suppose $P(n)$ is true for some $n=x \geq 1$.
Then $P(x)$ is true.
Then

$$
\begin{aligned}
\sum_{j=1}^{x+1}\left(j^{2}+1\right) j! & =\sum_{j=1}^{x}\left(j^{2}+1\right) j!+\left((x+1)^{2}+1\right)((x+1)!) \\
& =x(x+1)!=\left(x^{2}+2 x+2\right)(x+1)! \\
& =(x+1)!\left(x^{2}+3 x+2\right) \\
& =(x+1)!(x+2)(x+1) \\
& =(x+1)(x+2)!=(x+1)((x+1)+1)!
\end{aligned}
$$

so $P(x+1)$ is true.
Hence, $P(x)$ implies $P(x+1)$.
Then, since $P(1)$ is true, by induction $P(n)$ is true for all $n \geq 1$.
3. On $\mathbb{Z} \times \mathbb{Z}$, define a relation R by

$$
((a, b),(c, d)) \in R \text { iff } a+d=b+c
$$

Prove that R is an equivalence relation.
Reflexive? Let $(x, y) \in \mathbb{Z} \times \mathbb{Z}$.
Then $x+y=y+x$, so $((x, y),(x, y)) \in R$.
So R is reflexive.
Symmetric? Suppose $\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \in R$.
Then $x_{1}+y_{2}=y_{1}+x_{2}$ and so $x_{2}+y_{1}=y_{2}+x_{1}$, and so $\left(\left(x_{2}, y_{2}\right),\left(x_{1}, y_{1}\right)\right) \in R$.
So R is symmetric.
Transitive? Suppose $\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \in R$ and $\left(\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)\right) \in R$.
Then $x_{1}+y_{2}=y_{1}+x_{2}$ and $x_{2}+y_{3}=y_{2}+x_{3}$.
Summing, we have $x_{1}+y_{2}+x_{2}+y_{3}=y_{1}+x_{2}+y_{2}+x_{3}$.
Subtracting $x_{2}+y_{2}$ from both sides, we get

$$
x_{1}+y_{3}=y_{1}+x_{2}
$$

and hence $\left(\left(x_{1}, y_{1}\right),\left(x_{3}, y_{3}\right)\right) \in R$.
So R is transitive.

Thus, R is reflexive, symmetric and transitive, so R is an equivalence relation.
4. Let A, B and C be sets.

Suppose $f: A \rightarrow B, g: B \rightarrow C$ and $h: B \rightarrow C$.
(a) Prove that if f is onto and $g \circ f=h \circ f$, then $g(x)=h(x)$ for all $x \in B$.

Suppose $x \in B$.
Then $\exists a \in A$ such that $f(a)=x$ since f is onto.
Then $g(f(a))=h(f(a))$ since $g \circ f=h \circ f$.
Hence, $g(x)=h(x)$. Thus, for all x in $B, g(x)=h(x)$.
(b) Suppose $g \circ f$ is one-to-one. Is f necessarily one-to-one? Is g necessarily one-to-one? Prove your answers.
Suppose f is not one-to-one.
Then there exist $x_{1}, x_{2} \in A$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$ and $x_{1} \neq x_{2}$.
Then $g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)$ by $x_{1} \neq x_{2}$.
Hence, $g \circ f$ is not one-to-one.
This contradicts the assumption that $g \circ f$ is one-to-one.
Hence, the assumption that f is not one-to-one is false.
Thus f is one-to-one.
The function g need not be one-to-one.
Let $A=\{a\}, B=\left\{b_{1}, b_{2}\right\}$ and $C=\{c\}$.
Define $f=\left\{\left(a, b_{1}\right)\right\}, g=\left\{\left(b_{1}, c\right),\left(b_{2}, c\right)\right\}$.
Then $g \circ f=\{(a, c)\}$ so $g \circ f$ is one-to-one, but g is not.
5. Let \mathcal{F} and \mathcal{G} be families of sets.
(a) Prove that

$$
\cup \mathcal{F} \backslash \cup \mathcal{G} \subseteq \cup(\mathcal{F} \backslash \mathcal{G})
$$

Suppose $x \in \cup \mathcal{F} \backslash \cup \mathcal{G}$.
So $x \in \cup \mathcal{F}$ and $x \notin \cup \mathcal{G}$.
Then $\exists A \in \mathcal{F}$ such that $x \in A$.
Suppose $A \in \mathcal{G}$.
Then $x \in \cup \mathcal{G}$.
This contradicts $x \notin \cup \mathcal{G}$
Hence, $A \notin \mathcal{G}$.
Thus, $A \in \mathcal{F} \backslash \mathcal{G}$, and so $x \in \cup(\mathcal{F} \backslash \mathcal{G})$.
Therefore, $x \in \cup \mathcal{F} \backslash \cup \mathcal{G}$ implies $x \in \cup(\mathcal{F} \backslash \mathcal{G})$, and so $\cup \mathcal{F} \backslash \cup \mathcal{G} \subseteq(\mathcal{F} \backslash \mathcal{G})$.
(b) Give an example of non-empty families \mathcal{F} and \mathcal{G} such that

$$
\cup \mathcal{F} \backslash \cup \mathcal{G} \neq \cup(\mathcal{F} \backslash \mathcal{G})
$$

Prove that your example is valid.
Let $\mathcal{F}=\{\{1,2\},\{2,3\}\}$ and $\mathcal{G}=\{\{2\}\}$.
Then $\mathcal{F} \backslash \mathcal{G}=\mathcal{F}$ and $\cup(\mathcal{F} \backslash \mathcal{G})=\{1,2,3\}$, while

$$
\cup \mathcal{F}=\{1,2,3\}, \text { and } \cup \mathcal{G}=\{2\},
$$

so $\cup \mathcal{F} \backslash \cup \mathcal{G}=\{1,3\} \neq \cup(\mathcal{F} \backslash \mathcal{G})$.
6. A positive integer n is called a triangular number if

$$
n=\frac{1}{2} k(k+1)
$$

for some positive integer k.
The smallest ones are $1,3,6,10,15$.
Show that there are infinitely many positive integers that are not are the sum of two triangular numbers (hint: consider the situation modulo 9).

First, we note that if $k=r+9 m$ for some integers k, r and m, then

$$
\frac{1}{2} k(k+1)=\frac{1}{2} r(r+1)+9 m r+9\left(\frac{m(9 m+1)}{2}\right) .
$$

If m is even, then $\frac{m(9 m+1)}{2}$ is an integer, since $2 \mid m$, while if m is odd, then $9 m+1$ is even, and so $\frac{m(9 m+1)}{2}$ is an integer.
Hence, $\frac{1}{2} k(k+1) \equiv \frac{1}{2} r(r+1)(\bmod 9)$.
Thus, we make the following table:

k	$\frac{1}{2} k(k+1)$ reduced $\bmod 9$
0	0
1	1
2	3
3	6
4	1
5	6
6	3
7	1
8	0

and conclude that all triangular numbers are congruent to $0,1,3$ or $6 \bmod 9$.
Hence, summing two triangular numbers involves only the following cases, summing pair-wise $\bmod 9$:

	0	1	3	6
0	0	1	3	6
1	1	2	4	7
3	3	4	6	0
6	6	7	0	3

So we see that the sum of two triangular numbers must be congruent to $0,1,2,3,4,6$ or 7 $\bmod 9$.
This leaves out 5 (and 8).
So, any positive integer congruent to $5 \bmod 9$ is not the sum of two triangular numbers.
Since all numbers of the form $5+9 k$ are congruent to $5 \bmod 9$, and we can choose k to be any of the infinite set of positive integers, we conclude that there are infinitely many positive integers that are not the sum of two triangular numbers.

