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1. Prove the following two theorems.

(a) Let F be a family of sets. Suppose ∅ ∈ F . Then
⋂
F = ∅.

Proof:
Suppose

⋂
F 6= ∅.

Suppose x ∈
⋂
F .

Then x ∈ S∀S ∈ F .
Suppose ∅ ∈ F .

Then x ∈ ∅.
This is a contradiction, since ∅ has no elements.
Hence, the assumption ∅ ∈ F is false, and so ∅ 6∈ F . �

(b) Let A and B be sets. Suppose A ⊆ B. Then P(A) ⊆ P(B).
Proof:
Suppose S ∈ P(A).
Then S ⊆ A.
Suppose x ∈ S.

Then x ∈ A, so x ∈ B since A ⊆ B.
Thus, for all x ∈ S, x ∈ B, and so S ⊂ B.
Thus, S ∈ P(B).
Hence, ∀T ∈ P(A), T ∈ P(B), and so P(A) ⊆ P(B). �



2. Use induction to prove that, for all integers n > 0,

n∑
i=1

i2i = (n− 1)2n+1 + 2.

Proof:

For all positive integers n, define P (n) be the statement “
∑n

i=1 i2
i = (n− 1)2n+1 + 2. ”.

We proceed by induction.

Base Case: Let n = 1. Then
1∑

i=1

i2i = 1 · 21 = 2

while (n− 1)2n+1 + 2 = (0)(22) + 2 = 2 and so P (1) is true.

Induction Step: Suppose P (n) is true for some n = k ≥ 0.

So P (k) is true, so
k∑

i=1

i2i = (k − 1)2k+1 + 2.

Then

k+1∑
i=1

i2i =
k∑

i=1

i2i + (k + 1)2k+1

= (k − 1)2k+1 + 2 + (k + 1)2k+1

= 2k2k+1 + 2

= k2k+2 + 2

= (k + 1− 1)2(k+1)+1 + 2.

Thus, P (k + 1) is true.

Hence, P (k) implies P (k + 1), and since P (1) is true, by induction P (n) is true for all
n > 0. �



3. Let A and B be finite disjoint sets. Prove that |A ∪B| = |A|+ |B|.
Proof: Let A and B be disjoint sets. Let n = |A| and m = |B|. Then there a bijection f
from A to In and there is a bijection g from B to Im.

Define h : A ∪B → Im+n by

h(x) =

{
f(x) if x ∈ A

g(x) + n if x ∈ B.

Let x ∈ A ∪B.

Then, since A and B are disjoint, x is in exactly one of A and B.

Hence h(x) is well-defined.

Further, for any x ∈ A, 1 ≤ f(x) ≤ n, and for any x ∈ B, n+ 1 ≤ g(x) + n ≤ n+m.

Hence, h(x) ∈ Im+n, so indeed, h : A ∪B → Im+n.

Suppose h(x1) = h(x2) for some x1 and x2 ∈ A ∪B.

Suppose x1 ∈ A and x2 ∈ B. Then h(x1) ≤ n and h(x2) ≥ n + 1, so h(x1) 6= h(x2).
This is a contradiction, so it is not possible that x1 ∈ A and x2 ∈ B.

Suppose x2 ∈ A and x1 ∈ B. Then h(x2) ≤ n and h(x1) ≥ n + 1, so h(x2) 6= h(x1).
This is a contradiction, so it is not possible that Suppose x2 ∈ A and x1 ∈ B.

Suppose x1, x2 ∈ A. Then f(x1) = f(x2), so x1 = x2.

Suppose x1, x2 ∈ B. Then g(x1) + n = g(x2) + n, so g(x1) = g(x2), and hence x1 = x2.

Thus, x1 = x2, so h is one-to-one.

Suppose y ∈ Im+n.

Suppose 1 ≤ y ≤ n. Then y ∈ In, and since f is bijective, there is a x̂ ∈ A such that
f(x̂) = y and h(x̂) = y.

Suppose y > n. Then y − n ∈ Im, and since g is bijective, there is a x̂ ∈ B such that
g(x̂) = y − n and h(x̂) = y.

Thus, there is a x̂ ∈ A ∪B such that h(x̂) = y and so h is surjective.

Therefore, h is a bijection.

Hence, A ∪B ∼ Im+n, and so |A ∪B| = m+ n = |A|+ |B|. �



4. Define a relation R on the set of integers Z by

(a, b) ∈ R iff |a2 − b2| ≤ 6.

Determine whether or not R is (1) reflexive, (2) symmetric, and (3) transitive.

Prove your answers are correct.

(Note: you need to answer three separate questions here.)

Reflexivity: Let a ∈ Z.

Then |a2 − a2| = |0| = 0 ≤ 6, so (a, a) ∈ R.

Hence, R is reflexive.

Symmetry: Suppose (a, b) ∈ R.

Then |a2 − b2| ≤ 6.

Hence −6 ≤ a2 − b2 ≤ 6, and so

6 ≥ b2 − a2 ≥ −6.

That is, −6 ≤ b2 − a2 ≤ 6, and so |b2 − a2| ≤ 6.

Hence, (b, a) ∈ R, and so R is symmetric.

Transitive: Since |32 − 22| = 5 ≤ 6 and |22 − 12| = 3 ≤ 6, we conclude that (3, 2) ∈ R and
(2, 1) ∈ R.

On the other hand, |32 − 12| = 8 6≤ 6, and so (3, 1) 6∈ R.

Hence, R is not transitive.

5. Let A and B be sets, and f : A→ B and g : A→ B.

Prove that if f ∩ g 6= ∅, then f \ g is not a function from A to B.

Proof: Let A and B be sets, and f : A→ B and g : A→ B.

Suppose f ∩G 6= ∅.

Then ∃(a, b) ∈ f ∩ g.

So (a, b) ∈ f and (a, b) ∈ g, and hence

(a, b) 6∈ f \ g. (*)

Now, suppose (a, x) ∈ f \ g for some x ∈ B.

Then (a, x) ∈ f .

Since f is a function, f(a) = x = b.

Hence, (a, b) ∈ f \ g.

This is a contradiction to (∗).
Hence, (a, x) 6∈ f \ g for any x ∈ B.

Therefore, f \ g is not a function from A to B. �



6. Prove that there are infinitely many positive integers that are not the sum of a cube and twice a
square (i.e., a number of the form 2i2 where i is an integer).

Hint: consider the situation modulo 8.

Proof:

Let n ∈ Z.

Then, by the Euclidean Division theorem, n ≡ 0, 1, 2, 3, 4, 5, 6, or 7 (mod 8).

So n3 ≡ 0, 1, 0, 3, 0, 5, 0, or 7 (mod 8).

That is, n3 ≡ 0, 1, 3, 5, or 7 (mod 8).

Let m ∈ Z
Then m ≡ 0, 1, 2, 3, 4, 5, 6, or 7 (mod 8).

So, m2 ≡ 0, 1, 4, 1, 0, 1, 4, or 1 (mod 8).

Hence, 2m2 ≡ 0 or 2 (mod 8).

Applying these results, we find that we have the following possible values of n3 + 2m2

modulo 8:
0 1 3 5 7

0 0 1 3 5 7
2 2 3 5 7 1

We notice that 4 and 6 are missing from the table.

Hence, if x ≡ 4 (mod 8), then x is not the sum of a cube and twice a square.

Since every integer of the form 4 + 8k is congruent to 4 modulo 8, we conclude that there
are infinitely many integers that are not the sum of a cube and twice and square. �


