Math 300 C - Spring 2016
Final Exam
June 9, 2016
Answers

1. Prove the following two theorems.

(a) Let F be a family of sets. Suppose @ € F. Then (| F = @.
Proof:
Suppose (| F # @.
Suppose = € () F.
Then x € SVS € F.
Suppose & € F.
Then x € @.
This is a contradiction, since & has no elements.
Hence, the assumption @ € F is false,and so @ ¢ 7. &

(b) Let A and B be sets. Suppose A C B. Then P(A) C P(B).
Proof:
Suppose S € P(A).
Then S C A.
Suppose z € S.
Thenx € A,so x € B since A C B.
Thus, forallz € S,z € B,andso S C B.
Thus, S € P(B).
Hence, VI' € P(A), T € P(B),and so P(A) C P(B). &



2. Use induction to prove that, for all integers n > 0,
2t =(n—-1)2"" 42
i=1

Proof:
For all positive integers n, define P(n) be the statement “Y " | i2" = (n — 1)2"" 4 2.”.
We proceed by induction.

Base Case: Let n = 1. Then X

21'22‘:1-21:2

i=1
while (n — 1)2"* 4+ 2 = (0)(2?) + 2 = 2 and so P(1) is true.
Induction Step: Suppose P(n) is true for some n = k > 0.

So P(k) is true, so
k

> 2= (k—1)2"" 42,
=1
Then

k+1 k

D a2t =2 4 (k4 1)28

=1 =1
= (k=128 42 4 (k + 1)2F!
= 2k2F ! 12
= k22 42
= (k+1—1)20+D+ o

Thus, P(k + 1) is true.

Hence, P(k) implies P(k + 1), and since P(1) is true, by induction P(n) is true for all
n>0 N



3. Let A and B be finite disjoint sets. Prove that |A U B| = |A| + | B].

Proof: Let A and B be disjoint sets. Let n = |A| and m = |B|. Then there a bijection f
from A to I, and there is a bijection g from B to I,,,.

Define h : AU B — I,,1, by

h(x):{f(x) %f:veA

g(x)+n ifz e B.

Letz € AUB.

Then, since A and B are disjoint, x is in exactly one of A and B.

Hence h(z) is well-defined.

Further, foranyz € A,1 < f(z) <n,and foranyz € B,n+1 < g(z) +n < n+m.
Hence, h(z) € I,,1n, soindeed, h : AU B — I,1,.

Suppose h(z1) = h(xz) for some z; and z2 € AU B.

Suppose r1 € Aand zo € B.  Then h(z;) < nand h(zy) > n + 1, so h(z1) # h(zs).
This is a contradiction, so it is not possible that z; € A and z, € B.

Suppose z; € Aand z; € B.  Then h(z;) < nand h(x;) > n + 1, so h(zz) # h(xy).
This is a contradiction, so it is not possible that Suppose z, € A and z; € B.

Suppose 21,25 € A. Then f(x1) = f(23), s0 1 = .
Suppose 1,25 € B. Then g(x1) + n = g(x3) + n, so g(x1) = g(z2), and hence z; = z,.

Thus, ©; = x5, so h is one-to-one.

Suppose y € L4y.

Suppose 1 < y < n. Then y € I,, and since f is bijective, there is a £ € A such that
f(2) = y and h(i) = y.

Suppose y > n. Then y — n € I, and since g is bijective, there is a £ € B such that
9(2) =y —nand h(z) = y.

Thus, there isa # € AU B such that h(2) = y and so h is surjective.
Therefore, h is a bijection.
Hence, AUB ~ I,,,and so |[AUB| =m+n=|A|+ |B|. R



4. Define a relation R on the set of integers 7. by
(a,b) € Riff |a* — b*| < 6.

Determine whether or not R is (1) reflexive, (2) symmetric, and (3) transitive.
Prove your answers are correct.

(Note: you need to answer three separate questions here.)

Reflexivity: Let a € Z.

Then |a® — a?| = 0| = 0 < 6,50 (a,a) € R.

Hence, R is reflexive.

Symmetry: Suppose (a,b) € R.

Then |a* — b?| < 6.

Hence —6 < a? — b? < 6, and so

6> b*—a® > —6.

That is, —6 < b* — a® < 6, and so |b* — a?| < 6.
Hence, (b,a) € R, and so R is symmetric.

Transitive: Since |3? — 22| = 5 < 6 and [2? — 1?| = 3 < 6, we conclude that (3,2) € R and
(2,1) € R.

On the other hand, |3 — 12| =8 £ 6, and so (3,1) & R.

Hence, R is not transitive.

5. Let Aand B be sets,and f : A — Band g: A — B.
Prove that if f N g # @, then f \ g is not a function from A to B.
Proof: Let Aand Bbesets,and f: A— Bandg: A — B.
Suppose f NG # @.
Then 3(a,b) € fNg.
So (a,b) € fand (a,b) € g, and hence

(a,0) € [\ g *)

Now, suppose (a,z) € f\ g for some z € B.
Then (a,z) € f.
Since f is a function, f(a) =z = b.
Hence, (a,b) € f\ g.
This is a contradiction to ().

Hence, (a,x) € f \ g forany = € B.

Therefore, f \ g is not a function from A to B. B



6. Prove that there are infinitely many positive integers that are not the sum of a cube and twice a
square (i.e., a number of the form 2i? where i is an integer).

Hint: consider the situation modulo 8.

Proof:

Letn € Z.

Then, by the Euclidean Division theorem, n =0, 1,2, 3,4, 5,6, or 7 (mod 8).
Son*=0,1,0,3,0,5,0, or 7(mod38).

That is, n® = 0,1,3,5, or 7 (mod 8).

Letm e Z

Thenm =0,1,2,3,4,5,6, or 7 (mod 8).

So, m* =0,1,4,1,0,1,4, or 1 (mod38).

Hence, 2m? = 0 or 2 (mod 8).

Applying these results, we find that we have the following possible values of n® + 2m?
modulo 8:

001 3 5 7
0j0 1 3 5 7
212 3 5 7 1

We notice that 4 and 6 are missing from the table.
Hence, if = 4 (mod 8), then z is not the sum of a cube and twice a square.

Since every integer of the form 4 + 8k is congruent to 4 modulo 8, we conclude that there
are infinitely many integers that are not the sum of a cube and twice and square. B



