Math 300 C - Spring 2016 Final Exam June 9, 2016 Answers

1. Prove the following two theorems.

(a) Let \mathcal{F} be a family of sets. Suppose $\emptyset \in \mathcal{F}$. Then $\bigcap \mathcal{F} = \emptyset$. **Proof:** Suppose $\bigcap \mathcal{F} \neq \emptyset$. Suppose $x \in \bigcap \mathcal{F}$. Then $x \in S \forall S \in \mathcal{F}$. Suppose $\emptyset \in \mathcal{F}$. Then $x \in \emptyset$. This is a contradiction, since \emptyset has no elements. Hence, the assumption $\emptyset \in \mathcal{F}$ is false, and so $\emptyset \notin \mathcal{F}$. (b) Let A and B be sets. Suppose $A \subseteq B$. Then $\mathcal{P}(A) \subseteq \mathcal{P}(B)$. **Proof:** Suppose $S \in \mathcal{P}(A)$. Then $S \subseteq A$. Suppose $x \in S$. Then $x \in A$, so $x \in B$ since $A \subseteq B$. Thus, for all $x \in S$, $x \in B$, and so $S \subset B$.

Thus, $S \in \mathcal{P}(B)$.

Hence, $\forall T \in \mathcal{P}(A), T \in \mathcal{P}(B)$, and so $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

2. Use induction to prove that, for all integers n > 0,

$$\sum_{i=1}^{n} i2^{i} = (n-1)2^{n+1} + 2.$$

Proof:

For all positive integers n, define P(n) be the statement " $\sum_{i=1}^{n} i2^i = (n-1)2^{n+1} + 2$.". We proceed by induction.

Base Case: Let n = 1. Then

$$\sum_{i=1}^{1} i2^i = 1 \cdot 2^1 = 2$$

while $(n-1)2^{n+1} + 2 = (0)(2^2) + 2 = 2$ and so P(1) is true. Induction Step: Suppose P(n) is true for some $n = k \ge 0$. So P(k) is true, so

$$\sum_{i=1}^{k} i2^{i} = (k-1)2^{k+1} + 2.$$

Then

$$\sum_{i=1}^{k+1} i2^i = \sum_{i=1}^k i2^i + (k+1)2^{k+1}$$
$$= (k-1)2^{k+1} + 2 + (k+1)2^{k+1}$$
$$= 2k2^{k+1} + 2$$
$$= k2^{k+2} + 2$$
$$= (k+1-1)2^{(k+1)+1} + 2.$$

Thus, P(k+1) is true.

Hence, P(k) implies P(k + 1), and since P(1) is true, by induction P(n) is true for all n > 0.

3. Let A and B be finite disjoint sets. Prove that $|A \cup B| = |A| + |B|$.

Proof: Let *A* and *B* be disjoint sets. Let n = |A| and m = |B|. Then there a bijection *f* from *A* to I_n and there is a bijection *g* from *B* to I_m .

Define $h: A \cup B \to I_{m+n}$ by

$$h(x) = \begin{cases} f(x) & \text{if } x \in A\\ g(x) + n & \text{if } x \in B. \end{cases}$$

Let $x \in A \cup B$.

Then, since A and B are disjoint, x is in exactly one of A and B.

Hence h(x) is well-defined.

Further, for any $x \in A$, $1 \le f(x) \le n$, and for any $x \in B$, $n + 1 \le g(x) + n \le n + m$. Hence, $h(x) \in I_{m+n}$, so indeed, $h : A \cup B \to I_{m+n}$.

Suppose $h(x_1) = h(x_2)$ for some x_1 and $x_2 \in A \cup B$.

Suppose $x_1 \in A$ and $x_2 \in B$. Then $h(x_1) \leq n$ and $h(x_2) \geq n + 1$, so $h(x_1) \neq h(x_2)$. This is a contradiction, so it is not possible that $x_1 \in A$ and $x_2 \in B$.

Suppose $x_2 \in A$ and $x_1 \in B$. Then $h(x_2) \leq n$ and $h(x_1) \geq n + 1$, so $h(x_2) \neq h(x_1)$. This is a contradiction, so it is not possible that Suppose $x_2 \in A$ and $x_1 \in B$.

Suppose $x_1, x_2 \in A$. Then $f(x_1) = f(x_2)$, so $x_1 = x_2$.

Suppose $x_1, x_2 \in B$. Then $g(x_1) + n = g(x_2) + n$, so $g(x_1) = g(x_2)$, and hence $x_1 = x_2$.

Thus, $x_1 = x_2$, so *h* is one-to-one.

Suppose $y \in I_{m+n}$.

Suppose $1 \le y \le n$. Then $y \in I_n$, and since f is bijective, there is a $\hat{x} \in A$ such that $f(\hat{x}) = y$ and $h(\hat{x}) = y$.

Suppose y > n. Then $y - n \in I_m$, and since g is bijective, there is a $\hat{x} \in B$ such that $g(\hat{x}) = y - n$ and $h(\hat{x}) = y$.

Thus, there is a $\hat{x} \in A \cup B$ such that $h(\hat{x}) = y$ and so h is surjective.

Therefore, *h* is a bijection.

Hence, $A \cup B \sim I_{m+n}$, and so $|A \cup B| = m + n = |A| + |B|$.

4. Define a relation R on the set of integers \mathbb{Z} by

 $(a,b) \in R \text{ iff } |a^2 - b^2| \le 6.$

Determine whether or not R is (1) reflexive, (2) symmetric, and (3) transitive.

Prove your answers are correct.

(Note: you need to answer three separate questions here.)

Reflexivity: Let $a \in \mathbb{Z}$.

Then $|a^2 - a^2| = |0| = 0 \le 6$, so $(a, a) \in R$.

Hence, R is reflexive.

Symmetry: Suppose $(a, b) \in R$.

Then $|a^2 - b^2| \le 6$.

Hence $-6 \le a^2 - b^2 \le 6$, and so

$$6 \ge b^2 - a^2 \ge -6.$$

That is, $-6 \le b^2 - a^2 \le 6$, and so $|b^2 - a^2| \le 6$. Hence, $(b, a) \in R$, and so R is symmetric. **Transitive:** Since $|3^2 - 2^2| = 5 \le 6$ and $|2^2 - 1^2| = 3 \le 6$, we conclude that $(3, 2) \in R$ and $(2, 1) \in R$. On the other hand, $|3^2 - 1^2| = 8 \le 6$, and so $(3, 1) \notin R$. Hence, R is not transitive.

5. Let A and B be sets, and f : A → B and g : A → B.
Prove that if f ∩ g ≠ Ø, then f \ g is not a function from A to B.
Proof: Let A and B be sets, and f : A → B and g : A → B.
Suppose f ∩ G ≠ Ø.
Then ∃(a, b) ∈ f ∩ g.
So (a, b) ∈ f and (a, b) ∈ g, and hence

$$a,b) \notin f \setminus g. \tag{(*)}$$

Now, suppose $(a, x) \in f \setminus g$ for some $x \in B$. Then $(a, x) \in f$. Since f is a function, f(a) = x = b. Hence, $(a, b) \in f \setminus g$. This is a contradiction to (*). Hence, $(a, x) \notin f \setminus g$ for any $x \in B$.

Therefore, $f \setminus g$ is not a function from *A* to *B*.

6. Prove that there are infinitely many positive integers that are not the sum of a cube and twice a square (i.e., a number of the form $2i^2$ where *i* is an integer).

Hint: consider the situation modulo 8.

Proof:

Let $n \in \mathbb{Z}$.

Then, by the Euclidean Division theorem, $n \equiv 0, 1, 2, 3, 4, 5, 6$, or $7 \pmod{8}$.

So $n^3 \equiv 0, 1, 0, 3, 0, 5, 0$, or 7 (mod 8).

That is, $n^3 \equiv 0, 1, 3, 5$, or $7 \pmod{8}$.

Let $m \in \mathbb{Z}$

Then $m \equiv 0, 1, 2, 3, 4, 5, 6$, or $7 \pmod{8}$.

So, $m^2 \equiv 0, 1, 4, 1, 0, 1, 4$, or $1 \pmod{8}$.

Hence, $2m^2 \equiv 0 \text{ or } 2 \pmod{8}$.

Applying these results, we find that we have the following possible values of $n^3 + 2m^2$ modulo 8:

We notice that 4 and 6 are missing from the table.

Hence, if $x \equiv 4 \pmod{8}$, then x is not the sum of a cube and twice a square.

Since every integer of the form 4 + 8k is congruent to 4 modulo 8, we conclude that there are infinitely many integers that are not the sum of a cube and twice and square.