
Math 300 C - Spring 2022
Final Exam

June 9, 2022
Solutions

1. Let A, B, and C be sets.

Prove that A ∪ C ⊆ B ∪ C iff A \ C ⊆ B \ C.

Suppose A ∪B ⊆ B ∪ C.

Suppose x ∈ A \ C.
Then x ∈ A and x 6∈ C.

So x ∈ A ∪ C so x ∈ B ∪ C since A ∪ C ⊆ B ∪ C.

Since x 6∈ C, x ∈ B.

Hence, x ∈ B \ C.

Thus, x ∈ A \ C implies x ∈ B \ C, so A \ C ⊆ B \ C.

Suppose A \ C ⊆ B \ C.

Suppose x ∈ A ∪ C.

Suppose x ∈ C.

Then x ∈ B ∪ C.

Suppose x 6∈ C.

Then x ∈ A and x 6∈ C, so x ∈ A \ C.

Hence, x ∈ B \ C, since A \ C ⊆ B \ C.

So, x ∈ B, and so x ∈ B ∪ C.

Hence, x ∈ A ∪ C implies x ∈ B ∪ C, so A ∪ C ⊆ B ∪ C.

Therefore, A ∪ C ⊆ B ∪ C iff A \ C ⊆ B \ C.�



2. Let A be the set of all functions f : R→ R. Define a relation R on A by

(f, g) ∈ R iff there exists a c ∈ R such that f(x) = g(x) + c for all x ∈ R.

Prove that R is an equivalence relation.

Let f ∈ A.

Then f(x) = f(x) + 0 for all x ∈ R.

Hence, (f, f) ∈ R.

Thus, R is reflexive.

Suppose (f, g) ∈ R.

Then there exists c ∈ R such that f(x) = g(x) + c for all x ∈ R.

Then g(x) = f(x) + (−c) for all x ∈ R.

Hence, (g, f) ∈ R since −c ∈ R.

Thus, R is symmetric.

Suppose (f, g) ∈ R and (g, h) ∈ R.

Then there exists c ∈ R such that f(x) = g(x) + c for all x ∈ R.

Also, there exists d ∈ R such that g(x) = h(x) + c for all x ∈ R.

Then, f(x) = h(x) + (c+ d) for all x ∈ R.

Hence, (f, h) ∈ R since c+ d ∈ R.

Thus, R is transitive.

Since R is reflexive, symmetric and transitive, R is an equivalence relation.�



3. (a) Let F and G be families. Prove that
⋃
F \

⋃
G ⊆

⋃
(F \ G).

Suppose x ∈
⋃
F \

⋃
G.

Then x ∈
⋃
F and x 6∈

⋃
G.

Hence, there exists S ∈ F such that x ∈ S.
Also, S 6∈ G since x 6∈

⋃
G.

Hence, S ∈ F \ G, and thus x ∈
⋃
(F \ G).

Thus, x ∈
⋃
F \

⋃
G implies x ∈

⋃
(F \ G).

Therefore,
⋃
F \

⋃
G ⊆

⋃
(F \ G).�

(b) Prove that there exist non-empty families F and G such that
⋃
F \

⋃
G 6=

⋃
(F \ G).

Let F = {{1, 2}} and G = {{1}}.
Then

⋃
F = {1, 2} and

⋃
G = {1}.

So,
⋃
F \

⋃
G = {2}.

Also, F \ G = F so ⋃
(F \ G) = {1, 2} 6= {2} =

⋃
F \

⋃
G.

Hence, there exist non-empty families F and G such that
⋃
F \

⋃
G 6=

⋃
(F \ G). �



4. Let f : R→ R be defined by

f(x) =

{
x2 − 2x+ 3 if x ≤ 1;
−3x+ 5 if x > 1.

Prove that f is a bijection.

We first note that x2 − 2x+ 3 = (x− 1)2 + 2.

Since (x− 1)2 ≥ 0 for all x ∈ R, we conclude that x2 − 2x+ 3 ≥ 2 for all x ∈ R.

Hence f(x) ≥ 2 for all x ≤ 1.

Also, if x > 1, then −3x < −3 so −3x+ 5 < 2, i.e., f(x) < 2.

Let y ∈ R.

Suppose y ≥ 2.

Let a = 1−
√
y − 2.

Then a ≤ 1, so f(a) = (a− 1)2 + 2 = y − 2 + 2 = y.

Suppose y < 2.

Let a = −1
3
(y − 5).

Since y < 2, y − 5 < −3 and a = −1
3
(y − 5) > 1 and so f(a) = −3a+ 5 = y − 5 + 5 = y.

Thus, for all y ∈ R, there exists a ∈ R such that f(a) = y, i.e., f is surjective.

Suppose f(x1) = f(x2) for some x1, x2 ∈ R.

Suppose f(x1) < 2.

Then f(x2) < 2 and so f(x1) = −3x1 + 5 = −3x2 + 5.

Solving −3x1 + 5 = −3x2 + 5 we find x1 = x2.

Suppose f(x1) ≥ 2.

Then f(x2) ≥ 2 and f(x1) = (x1 − 1)2 + 1 = (x2 − 1)2 + 1 and x1 ≤ 1 and x2 ≤ 1.

Hence, (x1 − 1)2 = (x2 − 1)2, so |x1 − 1| = |x2 − 1|.
Since x1 ≤ 1 and x2 ≤ 1, |x1 − 1| = 1− x1 and |x2 − 1| = 1− x2.

So we conclude 1− x1 = 1− x2 and thus x1 = x2.

Thus f(x1) = f(x2) implies x1 = x2: f is injective.

Since f is injective and surjective, f is a bijection. �



5. Prove that 20! + 13 cannot be written as i2 + j4 for any integers i and j. (Hint: consider the
situation modulo 5).

By Euclid’s Division theorem, every integer is congruent to 0, 1, 2, 3 or 4 modulo 5.

Considering squares and fourth powers modulo 5, we have these possibilities (note we
can use the fact that n4 = (n2)2 here.)

n n2(mod5) n4(mod5)
0 0 0
1 1 1
2 4 16 ≡ 1
3 9 ≡ 4 1
4 1 1

Thus, for any integer n, n2 ≡ 0, 1 or 4 (mod 5) and n4 ≡ 0 or 1 (mod 5).

We can calculate all possible sums modulo 5 of a square and a fourth power in this mod-
ulo 5 addition table:
+ 0 1 4
0 0 1 4
1 1 2 0

Thus, we see that, for any integers i and j, i2 + j4 ≡ 0, 1, 2 or 4 (mod 5).

So i2 + j4 cannot be congruent to 3 (mod 5) for any integers i and j.

Now, 20! + 13 = 20(19!) + 10 + 3 = 5(4(19!) + 2) + 3 ≡ 3 (mod 5).

Suppose 20! + 13 = i2 + j4 for some integers i and j.

Then i2 + j4 ≡ 3 (mod 5).

This is a contradiction to our earlier statement that such a sum cannot be congruent to 3
modulo 5.

Hence, there do not exist integers i and j such that i2 + j4 = 20! + 13. �



6. Suppose A, B and C are sets. Suppose f : A→ B and g : B → C.

(a) Prove that if f is onto and g is not one-to-one, then g ◦ f is not one-to-one.
Suppose f is onto and g is not one-to-one.

Then there exist x1, x2 ∈ B such that g(x1) = g(x2) and x1 6= x2.
Since f is onto, there exist a1, a2 ∈ A such that f(a1) = x1 and f(a2) = x2.
Since f(a1) 6= f(a2), we conclude a1 6= a2.
Then g(f(a1)) = g(f(a2)) with a1 6= a2, so g is not one-to-one. �

(b) Give an example to show that g ◦ f may be one-to-one when g is not one-to-one.
Let A = {a}, B = {b1, b2}, C = {y}.
Let f = {(a, b1)} and g = {(b1, y), (b2, y)}.
Then g is not one-to-one: g(b1) = g(b2) but b1 6= b2.
Also, g ◦ f = {(a, c)}, so g is one-to-one. �



Elementary Properties of the Integers (EPIs)
Suppose a, b, c, and d are integers.

1. Closure: a+ b and ab are integers.

2. Substitution of Equals: If a = b, then a +
c = b+ c and ac = bc.

3. Commutativity: a+ b = b+a and ab = ba.

4. Associativity: (a+ b)+ c = a+(b+ c) and
(ab)c = a(bc).

5. The Distributive Law: a(b+ c) = ab+ ac

6. Identities: a + 0 = 0 + a = a and a · 1 =
1 · a = a.

0 is called the additive identity.

1 is called the multiplicative identity.

7. Additive Inverses: There exists an inte-
ger −a such that a+ (−a) = (−a) + a = 0.

8. Trichotomy: Exactly one of the following
is true:
a > 0, −a > 0, or a = 0.

9. The Well-Ordering Principle: Every
non-empty set of positive integers con-
tains a smallest element.

Sets

A ⊆ B iff x ∈ A implies x ∈ B

A = B iff A ⊆ B and B ⊆ A

x ∈ A ∪B iff x ∈ A or x ∈ B

x ∈ A ∩B iff x ∈ A and x ∈ B

x ∈ A \B iff x ∈ A and x 6∈ B

10. a · 0 = 0

11. If a+ c = b+ c, then a = b.

12. −a = (−1) · a

13. (−a) · b = −(ab)

14. (−a) · (−b) = ab

15. If ab = 0, then a = 0 or b = 0.

16. If a ≤ b and b ≤ a, then a = b.

17. If a < b and b < c, then a < c.

18. If a < b, then a+ c < b+ c.

19. If a < b and 0 < c, then ac < bc.

20. If a < b and c < 0, then bc < ac.

21. If a < b and c < d, then a+ c < b+ d.

22. If 0 ≤ a < b and 0 ≤ c < d, then
ac < bd.

23. If a < b, then −b < −a.

24. 0 ≤ a2, where a2 = a · a.

25. If ab = 1, then either a = b = 1 or
a = b = −1.

NOTE: Properties 17-23 hold if each < is
replaced with ≤.

One theorem for reference:
Theorem DAS (Divisors are Smaller):
Let a and b be positive integers. Then a|b
implies a ≤ b.


