Math 300 C - Spring 2022
Final Exam

June 9, 2022
Solutions

1. Let A, B, and C be sets.
Prove that AUC C BUCiff A\C C B\ C.
Suppose AUB C BUC.
Suppose z € A\ C.
Thenz € Aand z ¢ C.
Sorec AUCsoxe BUCsince AUC C BUC.
Sincex € C, z € B.
Hence, x € B\ C.
Thus, z € A\ C impliesz € B\ C,s0 A\ C C B\ C.

Suppose A\ C C B\ C.
Supposez € AUC.
Suppose z € C.
Thenz € BUC.
Suppose z ¢ C'.
Thenz € Aandz ¢ C,soz € A\ C.
Hence, z € B\ C,since A\ C C B\ C.
So,r € B,andsox € BUC.
Hence, x € AU Cimpliesz €¢ BUC,so AUC C BUC.

Therefore, AUC C BUCiff AN\CC B\C.H



2. Let A be the set of all functions f : R — R. Define a relation R on A by
(f,g9) € Riff there exists a ¢ € R such that f(x) = g(z) + cforall z € R.

Prove that R is an equivalence relation.
Let f € A.

Then f(z) = f(z) + 0forall z € R.
Hence, (f, f) € R.

Thus, R is reflexive.

Suppose (f,g) € R.
Then there exists ¢ € R such that f(z) = g(x) + c forall z € R.

Then g(z) = f(x) + (—c¢) forall x € R.
Hence, (g, f) € R since —c € R.

Thus, R is symmetric.

Suppose (f,g9) € Rand (g,h) € R.
Then there exists ¢ € R such that f(z) = g(x) + cforall z € R.
Also, there exists d € R such that g(z) = h(z) + cfor all z € R.
Then, f(z) = h(z) + (¢ + d) forall z € R.
Hence, (f,h) € Rsince c+d € R.

Thus, R is transitive.

Since R is reflexive, symmetric and transitive, R is an equivalence relation.ll



3. (a) Let F and G be families. Prove that | JF \ UG C U(F \ G).
Suppose z € JF \UJG.
Thenz e |JFand z ¢ |JG.
Hence, there exists S € F such thatz € S.
Also, S ¢ G sincez ¢ |JG.
Hence, S € F\ G, and thus x € | J(F \ G).
Thus, z € JF \ UG implies z € |J (F \ G).
Therefore, JF\ UG CU(F\G)1
(b) Prove that there exist non-empty families F and G such that |JF \|JG # U(F \ G).
Let F = {{1,2}} and G = {{1}}.
Then | JF ={1,2} and G = {1}.
So, UF\UG = {2}.
Also, F\ G = F so

UF\9) =12 # 23 =7\ o

Hence, there exist non-empty families 7 and G such that JF\ UG # J(F\ G). R



4. Let f : R — R be defined by

f() = 22 -2 +3 ifz <1,
)= “32+5 ifr>1.

Prove that f is a bijection.
We first note that 2? — 22 + 3 = (z — 1)* + 2.
Since (z — 1)? > 0 for all z € R, we conclude that 2> — 22 + 3 > 2 forall z € R.
Hence f(z) > 2forallx < 1.
Also,if x > 1, then —3z < —3so0 —3x + 5 < 2,i.e., f(z) < 2.
Lety € R.
Suppose y > 2.
Leta=1—-y—2.
Thena <1,s0 f(a)=(a—1)*+2=y—2+2=y.
Suppose y < 2.
Leta = —3(y — 5).
Sincey <2,y —5<-3anda=—%(y—5) >1landso f(a) = —3a+5=y—5+5=uy.
Thus, for all y € R, there exists a € R such that f(a) = y, i.e., f is surjective.

Suppose f(z1) = f(z2) for some xy, 2 € R.
Suppose f(z1) < 2.
Then f(x2) < 2and so f(z1) = —3x; +5 = —3x2 + 5.
Solving —3x; + 5 = —3x2 + 5 we find x; = .
Suppose f(z1) > 2.
Then f(x3) > 2and f(z1) = (z; —1)*+ 1= (22— 1)*+land z; < land z, < 1.
Hence, (x; — 1)* = (22 — 1), 50 |21 — 1| = |9 — 1.
Sincex; <landxzy <1,|r; —1|=1—x;and |zs — 1| =1 — z.
So we conclude 1 — 21 = 1 — 25 and thus z; = x».

Thus f(z1) = f(z2) implies x1 = xo: f is injective.

Since f is injective and surjective, f is a bijection. H



5. Prove that 20! + 13 cannot be written as i*> + j* for any integers i and j. (Hint: consider the
situation modulo 5).

By Euclid’s Division theorem, every integer is congruent to 0, 1, 2, 3 or 4 modulo 5.

Considering squares and fourth powers modulo 5, we have these possibilities (note we
can use the fact that n* = (n?)? here.)

n  n*(mod5) n*(mod5)

0 0 0
1 1 1
2 4 16=1
3 9=4 1
4 1 1

Thus, for any integer n, n> = 0,1 or 4 (mod 5) and n* = 0 or 1 (mod 5).

We can calculate all possible sums modulo 5 of a square and a fourth power in this mod-
ulo 5 addition table:

+]0 1 4
0[0 1 4
1|1 20

Thus, we see that, for any integers i and j, i* + j* = 0,1, 2 or 4 (mod 5).

So i? + j* cannot be congruent to 3 (mod 5) for any integers i and j.

Now, 20! + 13 = 20(19!) + 10 + 3 = 5(4(19!) + 2) + 3 = 3 (mod 5).
Suppose 20! + 13 = i + j* for some integers i and j.
Then 2 + j* = 3 (mod 5).

This is a contradiction to our earlier statement that such a sum cannot be congruent to 3
modulo 5.

Hence, there do not exist integers i and j such that /% + j* = 20! + 13. W



6. Suppose A, B and C are sets. Suppose f : A — Band g : B — C.

(a) Prove that if f is onto and g is not one-to-one, then g o f is not one-to-one.
Suppose f is onto and g is not one-to-one.
Then there exist x;, 5 € B such that g(z;) = g(z2) and z; # x.
Since f is onto, there exist a;, a; € A such that f(a;) = z; and f(az) = .
Since f(a1) # f(az2), we conclude a; # as.
Then g(f(a1)) = g(f(az)) with a; # as, so g is not one-to-one. W
(b) Give an example to show that g o f may be one-to-one when g is not one-to-one.
Let A= {a},B ={b1,b},C = {y}.
Let f = {(a,b1)} and g = {(b1,y), (b2, y)}.
Then g is not one-to-one: g(b;) = g(by) but by # bs.
Also, go f = {(a,c)}, so g is one-to-one. A



1.
2.

. The Well-Ordering Principle:

Elementary Properties of the Integers (EPIs)

Suppose a, b, ¢, and d are integers.

Closure: a + b and ab are integers.

Substitution of Equals: If « = b, then a +
c=0b+ cand ac = be.

Commutativity: a +b = b+a and ab = ba.

Associativity: (a+0b)+c=a+ (b+c) and
(ab)e = a(bc).

. The Distributive Law: a(b + ¢) = ab + ac

Identities: « + 0 = 0+a=acanda -1 =
1-a=a.

0 is called the additive identity.
1is called the multiplicative identity.

Additive Inverses: There exists an inte-
ger —a such thata + (—a) = (—a) +a = 0.

. Trichotomy: Exactly one of the following

is true:
a>0,—a>0,ora=0.

Every
non-empty set of positive integers con-
tains a smallest element.

Sets

AC Biffx € Aimpliesz € B
A=Biff ACBand BC A
re AUBIiffr e Aorz € B
re ANBiffr € Aandx € B
re€ A\ Biffr€ Aandz ¢ B

10. a-0=0

11. Ifa+c=b+c thena =b.

12. —a=(-1)-a

13. (—a)-b = —(ab)

14. (—a)-(=b) =ab

15. If ab=0,thena =0o0r b = 0.

16. If a <band b < a, thena = b.

17. Ifa<band b < ¢, then a < c.

18. Ifa< b, thena+c<b+ec.

19. If a < band 0 < ¢, then ac < be.

20. If a < band ¢ < 0, then be < ac.

21. fa<bandc< d,thena+c < b+d.

22.If 0 < a <band 0 < ¢ < d, then

ac < bd.

23. If a < b, then —b < —a.

24. 0 < a?, wherea® =a - a.

25. If ab = 1, then either a = b = 1 or

a=b=—-1.

NOTE: Properties 17-23 hold if each < is
replaced with <.

One theorem for reference:

Theorem DAS (Divisors are Smaller):
Let a and b be positive integers. Then a|b
implies a < b.



