Math 300 C - Spring 2022 Final Exam June 9, 2022 Solutions

1. Let A, B, and C be sets. *Prove that* $A \cup C \subseteq B \cup C$ *iff* $A \setminus C \subseteq B \setminus C$ *.* Suppose $A \cup B \subseteq B \cup C$. Suppose $x \in A \setminus C$. Then $x \in A$ and $x \notin C$. So $x \in A \cup C$ so $x \in B \cup C$ since $A \cup C \subseteq B \cup C$. Since $x \notin C$, $x \in B$. Hence, $x \in B \setminus C$. Thus, $x \in A \setminus C$ implies $x \in B \setminus C$, so $A \setminus C \subseteq B \setminus C$. Suppose $A \setminus C \subseteq B \setminus C$. Suppose $x \in A \cup C$. Suppose $x \in C$. Then $x \in B \cup C$. Suppose $x \notin C$. Then $x \in A$ and $x \notin C$, so $x \in A \setminus C$. Hence, $x \in B \setminus C$, since $A \setminus C \subseteq B \setminus C$. So, $x \in B$, and so $x \in B \cup C$. Hence, $x \in A \cup C$ implies $x \in B \cup C$, so $A \cup C \subseteq B \cup C$.

Therefore, $A \cup C \subseteq B \cup C$ iff $A \setminus C \subseteq B \setminus C$.

2. Let A be the set of all functions $f : \mathbb{R} \to \mathbb{R}$. Define a relation R on A by

$$(f,g) \in R$$
 iff there exists a $c \in \mathbb{R}$ such that $f(x) = g(x) + c$ for all $x \in \mathbb{R}$

Prove that R is an equivalence relation.

Let $f \in A$. Then f(x) = f(x) + 0 for all $x \in \mathbb{R}$.

Hence, $(f, f) \in R$.

Thus, *R* is reflexive.

Suppose $(f,g) \in R$.

Then there exists $c \in \mathbb{R}$ such that f(x) = g(x) + c for all $x \in \mathbb{R}$.

Then g(x) = f(x) + (-c) for all $x \in \mathbb{R}$.

Hence, $(g, f) \in R$ since $-c \in \mathbb{R}$.

Thus, *R* is symmetric.

Suppose $(f,g) \in R$ and $(g,h) \in R$.

Then there exists $c \in \mathbb{R}$ such that f(x) = g(x) + c for all $x \in \mathbb{R}$.

Also, there exists $d \in \mathbb{R}$ such that g(x) = h(x) + c for all $x \in \mathbb{R}$.

Then, f(x) = h(x) + (c+d) for all $x \in \mathbb{R}$.

Hence, $(f, h) \in R$ since $c + d \in \mathbb{R}$.

Thus, *R* is transitive.

Since *R* is reflexive, symmetric and transitive, *R* is an equivalence relation.■

- 3. (a) Let \mathcal{F} and \mathcal{G} be families. Prove that $\bigcup \mathcal{F} \setminus \bigcup \mathcal{G} \subseteq \bigcup (\mathcal{F} \setminus \mathcal{G})$. Suppose $x \in \bigcup \mathcal{F} \setminus \bigcup \mathcal{G}$. Then $x \in \bigcup \mathcal{F}$ and $x \notin \bigcup \mathcal{G}$. Hence, there exists $S \in \mathcal{F}$ such that $x \in S$. Also, $S \notin G$ since $x \notin \bigcup \mathcal{G}$. Hence, $S \in \mathcal{F} \setminus \mathcal{G}$, and thus $x \in \bigcup (\mathcal{F} \setminus \mathcal{G})$. Thus, $x \in \bigcup \mathcal{F} \setminus \bigcup \mathcal{G}$ implies $x \in \bigcup (\mathcal{F} \setminus \mathcal{G})$. Therefore, $\bigcup \mathcal{F} \setminus \bigcup \mathcal{G} \subseteq \bigcup (\mathcal{F} \setminus \mathcal{G})$.
 - (b) Prove that there exist non-empty families \mathcal{F} and \mathcal{G} such that $\bigcup \mathcal{F} \setminus \bigcup \mathcal{G} \neq \bigcup (\mathcal{F} \setminus \mathcal{G})$. Let $\mathcal{F} = \{\{1, 2\}\}$ and $\mathcal{G} = \{\{1\}\}$. Then $\bigcup \mathcal{F} = \{1, 2\}$ and $\bigcup \mathcal{G} = \{1\}$. So, $\bigcup \mathcal{F} \setminus \bigcup \mathcal{G} = \{2\}$. Also, $\mathcal{F} \setminus \mathcal{G} = \mathcal{F}$ so

$$\bigcup (\mathcal{F} \setminus \mathcal{G}) = \{1, 2\} \neq \{2\} = \bigcup \mathcal{F} \setminus \bigcup \mathcal{G}.$$

Hence, there exist non-empty families \mathcal{F} and \mathcal{G} such that $\bigcup \mathcal{F} \setminus \bigcup \mathcal{G} \neq \bigcup (\mathcal{F} \setminus \mathcal{G})$.

4. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} x^2 - 2x + 3 & \text{if } x \le 1; \\ -3x + 5 & \text{if } x > 1. \end{cases}$$

Prove that f is a bijection.

We first note that $x^2 - 2x + 3 = (x - 1)^2 + 2$. Since $(x-1)^2 > 0$ for all $x \in \mathbb{R}$, we conclude that $x^2 - 2x + 3 > 2$ for all $x \in \mathbb{R}$. Hence $f(x) \ge 2$ for all $x \le 1$. Also, if x > 1, then -3x < -3 so -3x + 5 < 2, i.e., f(x) < 2. Let $y \in \mathbb{R}$. Suppose $y \ge 2$. Let $a = 1 - \sqrt{y - 2}$. Then a < 1, so $f(a) = (a - 1)^2 + 2 = y - 2 + 2 = y$. Suppose y < 2. Let $a = -\frac{1}{3}(y-5)$. Since y < 2, y - 5 < -3 and $a = -\frac{1}{3}(y - 5) > 1$ and so f(a) = -3a + 5 = y - 5 + 5 = y. Thus, for all $y \in \mathbb{R}$, there exists $a \in \mathbb{R}$ such that f(a) = y, i.e., f is surjective. Suppose $f(x_1) = f(x_2)$ for some $x_1, x_2 \in \mathbb{R}$. Suppose $f(x_1) < 2$. Then $f(x_2) < 2$ and so $f(x_1) = -3x_1 + 5 = -3x_2 + 5$. Solving $-3x_1 + 5 = -3x_2 + 5$ we find $x_1 = x_2$. Suppose $f(x_1) > 2$. Then $f(x_2) \ge 2$ and $f(x_1) = (x_1 - 1)^2 + 1 = (x_2 - 1)^2 + 1$ and $x_1 \le 1$ and $x_2 \le 1$. Hence, $(x_1 - 1)^2 = (x_2 - 1)^2$, so $|x_1 - 1| = |x_2 - 1|$. Since $x_1 \leq 1$ and $x_2 \leq 1$, $|x_1 - 1| = 1 - x_1$ and $|x_2 - 1| = 1 - x_2$. So we conclude $1 - x_1 = 1 - x_2$ and thus $x_1 = x_2$. Thus $f(x_1) = f(x_2)$ implies $x_1 = x_2$: f is injective.

Since *f* is injective and surjective, *f* is a bijection. \blacksquare

5. Prove that 20! + 13 cannot be written as $i^2 + j^4$ for any integers *i* and *j*. (Hint: consider the situation modulo 5).

By Euclid's Division theorem, every integer is congruent to 0, 1, 2, 3 or 4 modulo 5.

Considering squares and fourth powers modulo 5, we have these possibilities (note we can use the fact that $n^4 = (n^2)^2$ here.)

n	$n^2 (mod5)$	$n^4 (mod5)$
0	0	0
1	1	1
2	4	$16 \equiv 1$
3	$9 \equiv 4$	1
4	1	1

Thus, for any integer n, $n^2 \equiv 0, 1$ or 4 (mod 5) and $n^4 \equiv 0$ or 1 (mod 5).

We can calculate all possible sums modulo 5 of a square and a fourth power in this modulo 5 addition table:

+	0	1	4
0	0	1	4
1	1	2	0

Thus, we see that, for any integers *i* and *j*, $i^2 + j^4 \equiv 0, 1, 2$ or 4 (mod 5).

So $i^2 + j^4$ cannot be congruent to 3 (mod 5) for any integers *i* and *j*.

Now, $20! + 13 = 20(19!) + 10 + 3 = 5(4(19!) + 2) + 3 \equiv 3 \pmod{5}$.

Suppose $20! + 13 = i^2 + j^4$ for some integers *i* and *j*.

Then $i^2 + j^4 \equiv 3 \pmod{5}$.

This is a contradiction to our earlier statement that such a sum cannot be congruent to $3 \mod 5.$

Hence, there do not exist integers *i* and *j* such that $i^2 + j^4 = 20! + 13$.

- 6. Suppose A, B and C are sets. Suppose $f : A \rightarrow B$ and $g : B \rightarrow C$.
 - (a) Prove that if f is onto and g is not one-to-one, then $g \circ f$ is not one-to-one. Suppose f is onto and g is not one-to-one.

Then there exist $x_1, x_2 \in B$ such that $g(x_1) = g(x_2)$ and $x_1 \neq x_2$. Since f is onto, there exist $a_1, a_2 \in A$ such that $f(a_1) = x_1$ and $f(a_2) = x_2$. Since $f(a_1) \neq f(a_2)$, we conclude $a_1 \neq a_2$. Then $g(f(a_1)) = g(f(a_2))$ with $a_1 \neq a_2$, so g is not one-to-one.

(b) Give an example to show that g ∘ f may be one-to-one when g is not one-to-one. Let A = {a}, B = {b₁, b₂}, C = {y}. Let f = {(a, b₁)} and g = {(b₁, y), (b₂, y)}. Then g is not one-to-one: g(b₁) = g(b₂) but b₁ ≠ b₂. Also, g ∘ f = {(a, c)}, so g is one-to-one. ■

Elementary Properties of the Integers (EPIs)

Suppose a , b , c , and d are integers.	10. $a \cdot 0 = 0$
1. Closure: $a + b$ and ab are integers.	11. If $a + c = b + c$
2. Substitution of Equals: If $a = b$, then $a + b$	12. $-a = (-1) \cdot a$
c = b + c and $ac = bc$.	13. $(-a) \cdot b = -(a)$
3. Commutativity: $a + b = b + a$ and $ab = ba$.	14. $(-a) \cdot (-b) =$
4. Associativity: $(a + b) + c = a + (b + c)$ and $(ab)c = a(bc)$.	15. If $ab = 0$, then
5. The Distributive Law: $a(b+c) = ab + ac$	16. If $a \leq b$ and b
6. Identities: $a + 0 = 0 + a = a$ and $a \cdot 1 =$	17. If $a < b$ and b
$1 \cdot a = a.$	18. If $a < b$, then a

0 is called the additive identity.

1 is called the multiplicative identity.

- 7. Additive Inverses: There exists an integer -a such that a + (-a) = (-a) + a = 0.
- 8. **Trichotomy:** Exactly one of the following is true: a > 0, -a > 0, or a = 0.
- 9. The Well-Ordering Principle: Every non-empty set of positive integers contains a smallest element.

Sets

$$A \subseteq B \text{ iff } x \in A \text{ implies } x \in B$$
$$A = B \text{ iff } A \subseteq B \text{ and } B \subseteq A$$
$$x \in A \cup B \text{ iff } x \in A \text{ or } x \in B$$
$$x \in A \cap B \text{ iff } x \in A \text{ and } x \in B$$

 $x \in A \setminus B$ iff $x \in A$ and $x \notin B$

- c, then a = b.
- ab)
- ab
- n a = 0 or b = 0.
- < a, then a = b.
- < c, then a < c.
- a + c < b + c.
- 19. If a < b and 0 < c, then ac < bc.
- 20. If a < b and c < 0, then bc < ac.
- 21. If a < b and c < d, then a + c < b + d.
- 22. If $0 \leq a < b$ and $0 \leq c < d$, then ac < bd.

23. If
$$a < b$$
, then $-b < -a$.

24.
$$0 \le a^2$$
, where $a^2 = a \cdot a$.

25. If ab = 1, then either a = b = 1 or a = b = -1.

NOTE: Properties 17-23 hold if each < is replaced with \leq .

One theorem for reference:

Theorem DAS (Divisors are Smaller):

Let *a* and *b* be positive integers. Then a|bimplies $a \leq b$.