Math 300 A - Winter 2013 Final Exam March 20, 2013

Name:	Student ID no. :		
Sionature [,]	Section:		

1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
Total	70	

- Complete all seven questions.
- You have 110 minutes to complete the exam.

1. Let A, B and C be sets. Prove that $(A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C)$.

2. Suppose ${\mathcal F}$ and ${\mathcal G}$ are families of sets.

Prove that if $\cup \mathcal{F} \not\subseteq \cup \mathcal{G}$, then there is some $S \in \mathcal{F}$ such that for all $T \in \mathcal{G}$, $S \not\subseteq T$.

3. Suppose $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$. Fill in the blank and prove the statement: $f \cap g$ is a function from \mathbb{R} to \mathbb{R} iff _______.

4. Show that $\mathbb{Z}_{>0}$ is equinumerous with \mathbb{Z} by giving an explicit example of a bijection from $\mathbb{Z}_{>0}$ to \mathbb{Z} . Prove that your function is a bijection.

5. Use induction to prove that, for $n \in \mathbb{Z}_{>0}$,

$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}.$$

6. Let *A* be the set of all functions from \mathbb{R} to \mathbb{R} .

Let $M=\{(f,g)\in A\times A: \exists \lambda\in\mathbb{Q}, \lambda\neq 0, \text{ such that } g(x)=\lambda f(x) \forall x\in\mathbb{R}\}.$

Prove that ${\cal M}$ is an equivalence relation.

7. Let R be the equivalence relation on \mathbb{R} defined by:

For
$$a$$
 and b in \mathbb{R} , $(a,b) \in R \Leftrightarrow a-b \in \mathbb{Q}$.

Prove
$$\mathbb{Q} \in \mathbb{R}/R$$
.

Axioms

Elementary Properties of Real Numbers

Suppose x, y, and z are real numbers. We will take as fact each of the following.

- 1. x+y and xy are real numbers. (\mathbb{R} is *closed* under addition and multiplication.)
- 2. If x = y, then x + z = y + z and xz = yz. (This is sometimes called *substitution of equals*.)
- 3. x + y = y + x and xy = yx (addition and multiplication are *commutative* in \mathbb{R})
- 4. (x+y)+z=x+(y+z) and (xy)z=x(yz) (addition and multiplication are *associative* in \mathbb{R})
- 5. x(y+z) = xy + xz (This is the *Distributive Law*.)
- 6. x + 0 = 0 + x = x and $x \cdot 1 = 1 \cdot x = x$ (0 is the *additive identity*; 1 is the *multiplicative identity*.)
- 7. There exists a real number -x such that x + (-x) = (-x) + x = 0. (That is, every real number has an *additive inverse* in \mathbb{R} .)
- 8. If $x \neq 0$, then there exists a real number x^{-1} such that $x \cdot x^{-1} = x^{-1} \cdot x = 1$. (That is, every non-zero real number has a *multiplicative inverse* in \mathbb{R} .)
- 9. If x > 0 and y > 0, then x + y > 0 and xy > 0.
- 10. Either x > 0, -x > 0, or x = 0.
- 11. If x and y are integers, then -x, x+y, and xy are integers. (The additive inverse of an integer is an integer and \mathbb{Z} is closed under addition and multiplication.)

<u>NOTE</u>: It is not hard to prove that \mathbb{Q} , the set of rational numbers is closed under addition and multiplication and that every non-zero rational number has a multiplicative inverse in \mathbb{Q} .

The following properties of real numbers that allow us to do algebra follow from the axioms on the front page.

If x, y, z, u, and v are real numbers, then:

1.
$$x \cdot 0 = 0$$

2. If
$$x + z = y + z$$
, then $x = y$.

3. If
$$x \cdot z = y \cdot z$$
 and $z \neq 0$, then $x = y$.

4.
$$-x = (-1) \cdot x$$

5.
$$(-x) \cdot y = -(x \cdot y)$$

6.
$$(-x) \cdot (-y) = x \cdot y$$

7. If
$$x \cdot y = 0$$
, then $x = 0$ or $y = 0$.

8. If
$$x \le y$$
 and $y \le x$, then $x = y$.

9. If
$$x \le y$$
 and $y \le z$, then $x \le z$.

10. At least one of the following is true: $x \le y$ or $y \le x$.

11. If
$$x \le y$$
, then $x + z \le y + z$.

12. If
$$x \le y$$
 and $0 \le z$, then $xz \le yz$.

13. If
$$x \le y$$
 and $z \le 0$, then $yz \le xz$.

14. If
$$x \le y$$
 and $u \le v$, then $x + u \le y + v$.

15. If
$$0 \le x \le y$$
 and $0 \le u \le v$, then $xu \le yv$.

16. If
$$x \le y$$
, then $-y \le -x$.

17.
$$0 < x^2$$

18.
$$0 < 1$$

19. If
$$0 < x$$
, then $0 < x^{-1}$.

20. If
$$0 < x < y$$
, then $0 < y^{-1} < x^{-1}$.

And here are a couple of properties of integers.

- 21. Every integer is either even or odd, never both.
- 22. The only integers that divide 1 are -1 and 1.