Math 300 D - Winter 2014 Final Exam March 18, 2014

Name: _____

Student ID no. : _____

Signature: _____

1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
Total	60	

- Check that your exam has six questions.
- Complete all six questions.
- You have 110 minutes to complete the exam.

1. Let *A* and *B* be disjoint sets. Suppose there is a bijection from *A* to I_n and there is a bijection from *B* to I_m . Prove that there exists a bijection from $A \cup B$ to I_{m+n} .

2. Use induction to prove that, for all integers $n \ge 0$,

 $8|5^n + 12n - 1.$

3. (a) Let *A* be the set of all real functions $f : \mathbb{R} \to \mathbb{R}$. Define a relation *R* on *A* by:

 $(f,g) \in R \Leftrightarrow$ there exists a real constant k such that f(x) = g(x) + k for all $x \in \mathbb{R}$. Prove that R is an equivalence relation.

(b) Define a relation R on \mathbb{R} by:

$$(x,y) \in R \Leftrightarrow |x-y| < 1$$

Prove that R is not an equivalence relation.

4. Let *A* and *B* be sets. Prove that $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$.

5. (a) Let $m \in \mathbb{Z}$ and suppose m > 1. Suppose $a, b, c \in \mathbb{Z}$. Prove that if $a \equiv b \pmod{m}$, then $ac \equiv bc \pmod{m}$.

(b) Prove that if *n* is an integer then $n^2 \equiv 0, 1, \text{ or } 4 \pmod{8}$.

- 6. Let *A*, *B* and *C* be sets. Let $f : A \rightarrow B$, and $g : B \rightarrow C$.
 - (a) Suppose $g \circ f : A \to C$ is one-to-one. Is f necessarily one-to-one? Prove your answer.

(b) Suppose $g \circ f : A \to C$ is one-to-one. Is g necessarily one-to-one? Prove your answer.

DeMorgan's laws

 $\neg (P \wedge Q)$ is equivalent to $\neg P \vee \neg Q$

 $\neg (P \lor Q)$ is equivalent to $\neg P \land \neg Q$

Commutative Laws

 $P \wedge Q$ is equivalent to $Q \wedge P$

 $P \lor Q$ is equivalent to $Q \lor P$

Associative Laws

 $P \wedge (Q \wedge R)$ is equivalent to $(P \wedge Q) \wedge R$

 $P \lor (Q \lor R)$ is equivalent to $(P \lor Q) \lor R$

Idempotent Laws

 $P \wedge P$ is equivalent to P

 $P \lor P$ is equivalent to P

Distributive Laws

 $P \land (Q \lor R)$ is equivalent to $(P \land Q) \lor (P \land R)$

 $P \lor (Q \land R)$ is equivalent to $(P \lor Q) \land (P \lor R)$

Absorption Laws

 $P \lor (P \land Q)$ is equivalent to P

 $P \wedge (P \vee Q)$ is equivalent to P

Double Negation Law

 $\neg \neg P$ is equivalent to *P*

Tautology Laws

 $P \land$ (a tautology) is equivalent to P $P \lor$ (a tautology) is a tautology \neg (a tautology) is a contradiction Contradiction Laws $P \land$ (a contradiction) is a contradiction $P \lor$ (a contradiction) is equivalent to P \neg (a contradiction) is a tautology Conditional Laws

 $P \rightarrow Q$ is equivalent to $\neg P \lor Q$

 $P \rightarrow Q$ is equivalent to $\neg (P \land \neg Q)$

Contrapositive Laws

 $P \rightarrow Q$ is equivalent to $\neg Q \rightarrow \neg P$

Quantifier Negation Laws

 $\neg \exists x P(x)$ is equivalent to $\forall x \neg P(x)$

 $\neg \forall x P(x)$ is equivalent to $\exists x \neg P(x)$

Sets

 $A = B \Leftrightarrow ((x \in A) \Leftrightarrow (x \in B))$ $x \in A \cup B \Leftrightarrow ((x \in A) \lor (x \in B))$ $x \in A \cap B \Leftrightarrow ((x \in A) \land (x \in B))$ $x \in A \setminus B \Leftrightarrow (x \in A) \land (x \notin B)$