Math 300 D - Winter 2014
 Final Exam
 March 18, 2014

Name: \qquad Student ID no. : \qquad

Signature: \qquad

1	10
2	10
3	10
4	10
5	10
6	10
Total	60

- Check that your exam has six questions.
- Complete all six questions.
- You have 110 minutes to complete the exam.

1. Let A and B be disjoint sets. Suppose there is a bijection from A to I_{n} and there is a bijection from B to I_{m}. Prove that there exists a bijection from $A \cup B$ to I_{m+n}.
2. Use induction to prove that, for all integers $n \geq 0$,

$$
8 \mid 5^{n}+12 n-1
$$

3. (a) Let A be the set of all real functions $f: \mathbb{R} \rightarrow \mathbb{R}$. Define a relation R on A by: $(f, g) \in R \Leftrightarrow$ there exists a real constant k such that $f(x)=g(x)+k$ for all $x \in \mathbb{R}$. Prove that R is an equivalence relation.
(b) Define a relation R on \mathbb{R} by:

$$
(x, y) \in R \Leftrightarrow|x-y|<1
$$

Prove that R is not an equivalence relation.
4. Let A and B be sets. Prove that $\mathcal{P}(A \cap B)=\mathcal{P}(A) \cap \mathcal{P}(B)$.
5. (a) Let $m \in \mathbb{Z}$ and suppose $m>1$. Suppose $a, b, c \in \mathbb{Z}$.

Prove that if $a \equiv b(\bmod m)$, then $a c \equiv b c(\bmod m)$.
(b) Prove that if n is an integer then $n^{2} \equiv 0,1$, or $4(\bmod 8)$.
6. Let A, B and C be sets. Let $f: A \rightarrow B$, and $g: B \rightarrow C$.
(a) Suppose $g \circ f: A \rightarrow C$ is one-to-one. Is f necessarily one-to-one? Prove your answer.
(b) Suppose $g \circ f: A \rightarrow C$ is one-to-one. Is g necessarily one-to-one? Prove your answer.

DeMorgan's laws
$\neg(P \wedge Q)$ is equivalent to $\neg P \vee \neg Q$
$\neg(P \vee Q)$ is equivalent to $\neg P \wedge \neg Q$
Commutative Laws
$P \wedge Q$ is equivalent to $Q \wedge P$
$P \vee Q$ is equivalent to $Q \vee P$
Associative Laws
$P \wedge(Q \wedge R)$ is equivalent to $(P \wedge Q) \wedge R$
$P \vee(Q \vee R)$ is equivalent to $(P \vee Q) \vee R$ Idempotent Laws
$P \wedge P$ is equivalent to P
$P \vee P$ is equivalent to P
Distributive Laws
$P \wedge(Q \vee R)$ is equivalent to $(P \wedge Q) \vee(P \wedge R)$
$P \vee(Q \wedge R)$ is equivalent to $(P \vee Q) \wedge(P \vee R)$
Absorption Laws
$P \vee(P \wedge Q)$ is equivalent to P
$P \wedge(P \vee Q)$ is equivalent to P
Double Negation Law
$\neg \neg P$ is equivalent to P
Tautology Laws
$P \wedge$ (a tautology) is equivalent to P
$P \vee($ a tautology $)$ is a tautology
$\neg($ a tautology $)$ is a contradiction
Contradiction Laws
$P \wedge$ (a contradiction) is a contradiction
$P \vee$ (a contradiction) is equivalent to P
\neg (a contradiction) is a tautology

Conditional Laws

$P \rightarrow Q$ is equivalent to $\neg P \vee Q$
$P \rightarrow Q$ is equivalent to $\neg(P \wedge \neg Q)$
Contrapositive Laws
$P \rightarrow Q$ is equivalent to $\neg Q \rightarrow \neg P$
Quantifier Negation Laws
$\neg \exists x P(x)$ is equivalent to $\forall x \neg P(x)$
$\neg \forall x P(x)$ is equivalent to $\exists x \neg P(x)$
Sets

$$
\begin{gathered}
A=B \Leftrightarrow((x \in A) \Leftrightarrow(x \in B)) \\
x \in A \cup B \Leftrightarrow((x \in A) \vee(x \in B)) \\
x \in A \cap B \Leftrightarrow((x \in A) \wedge(x \in B)) \\
x \in A \backslash B \Leftrightarrow(x \in A) \wedge(x \notin B)
\end{gathered}
$$

