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1. Let a and b be integers. Prove that 3|a2 + b2 if and only if 3|a and 3|b.

Let a and b be integers.

By Euclid’s theorem, a = 3k + r and b = 3m + s for integers k,m, r and s, with 0 ≤ r ≤ 2
and 0 ≤ s ≤ 2.

Then

a2 + b2 = (3k + r)2 + (3m+ s)2 = 9k2 + 6kr + r2 + 9m2 + 6ms+ s2

= 3(3k2 + 2kr + 3m2 + 2ms) + r2 + s2.

Suppose a2 + b2 = 3t for some integer t.

Then r2 + s2 = 3(t− (3k2 + 2kr + 3m2 + 2ms)) and so r2 + s2 is divisible by 3.

On the other hand, suppose r2 + s2 = 3v for some integer v. Then

a2 + b2 = 3((3k2 + 2kr + 3m2 + 2ms) + v),

and so a2 + b2 is divisible by 3.

Thus, a2 + b2 is divisible by 3 if and only if r2 + s2 is divisible by 3.

We have the following table of possible value of r2 + s2.

0 1 2
0 0 1 4
1 1 2 5
2 2 5 8

Since 1, 2, 4, 5 and 8 are not divisible by 3, we conclude that a2 + b2 is divisible by 3 if and
only if r = s = 0; that is, if and only if 3|a and 3|b. �



2. Let A and B be sets. Prove that
A ⊆ B

if and only if
P(A) ⊆ P(B).

Let A and B be sets.

Suppose P(A) ⊆ P(B).

Note that A ∈ P(A), so A ∈ P(B).

Hence A ⊆ B.

Suppose A ⊆ B.

Let x ∈ P(A).

Then x ⊆ A.

Suppose y ∈ x.

Then y ∈ A, and so y ∈ B.

Thus y ∈ x implies y ∈ B, and hence x ⊂ B.

Thus, x ∈ P(B).

Hencer, x ∈ P(A) implies x ∈ P(B), so P(A) ⊆ P(B).�



3. Use induction to prove that
n

∑

i=1

1

i(i+ 1)
=

n

n+ 1

for all n ∈ Z>0.

Let n ∈ Z>0.

Let P (n) be the statement “
n

∑

i=1

1

i(i+ 1)
=

n

n+ 1
”.

Base Case: Let n = 1.

Then
n

∑

i=1

1

i(i+ 1)
=

1

1(1 + 1)
=

1

2
=

1

1 + 1
=

n

n+ 1
.

Thus, P (1) is true.

Induction Step: Suppose P (n) is true for some n = k > 0.

So P (k) is true. That is,

k
∑

i=1

1

i(i+ 1)
=

k

k + 1

Then

k+1
∑

i=1

1

i(i+ 1)
=

k
∑

i=1

1

i(i+ 1)
+

1

(k + 1)(k + 2)

=
k

k + 1
+

1

(k + 1)(k + 2)

=
k(k + 2)

(k + 1)(k + 2)
+

1

(k + 1)(k + 2)

=
k(k + 2) + 1

(k + 1)(k + 2)

=
k2 + 2k + 1

(k + 1)(k + 2)

=
(k + 1)2

(k + 1)(k + 2))

=
k + 1

k + 2

Hence P (k + 1) is true.

Thus, P (k) implies P (k + 1), and P (1) is true, so, by induction, P (n) is true for
all n ∈ Z>0.�



4. Suppose A, B and C are sets with A ⊆ C and B ⊆ C. Suppose A ∩ B = ∅, and that A ∼ B.
Prove that

C \ A ∼ C \B.

Suppose A, B and C are sets with A ⊆ C and B ⊆ C. Suppose A∩B = ∅, and that A ∼ B.

Then there exists a bijection f : A → B.

Note that since f is a bijection, f−1 : B → A is a bijection.

Define a function g : C \ A → C \B by

g(x) =

{

x if x 6∈ B,
f−1(x) if x ∈ B.

We prove that g is a bijection.

Suppose y ∈ C \B.

Suppose y ∈ A. Then f(y) ∈ B.

Since A ∩ B = ∅, f(y) ∈ C \ A, and we have g(f(y)) = f−1(f(y)) = y.

Suppose y 6∈ A. Then y 6∈ B, so g(y) = y.

Hence, g is surjective.

Suppose g(x1) = g(x2).

Suppose x1, x2 ∈ B. Then
f−1(x1) = f−1(x2)

and so x1 = x2.

Suppose x1, x2 6∈ B.

Then g(x1) = x1 = g(x2) = x2.

Suppose exactly one of x1, x2 is in B.

Without loss of generality, suppose x1 ∈ B and x2 6∈ B.

Then g(x1) = f−1(x1) = g(x2) = x2.

Since x2 ∈ C \ A, x2 6∈ A.

However, f−1(x1) ∈ A, and this contradicts the statement g(x1) = g(x2).

Thus, g is injective.

Hence, g is a bijection.�



5. Suppose A, B and C are sets. Suppose f : A → B and g : B → C.

(a) Prove that if f is onto and g is not one-to-one, then g ◦ f is not one-to-one.

Suppose A, B and C are sets. Suppose f : A → B and g : B → C, f is onto and g is
not one-to-one.

Since g is not one-to-one, there exist b1 6= b2 ∈ B such that g(b1) = g(b2).

Since f is onto, there exist a1 and a2 such that f(a1) = b1 and f(a2) = b2.

Note that a1 6= a2 since b1 6= b2.

Then g(f(a1)) = g(b1) = g(b2) = g(f(a2)), so g ◦ f is not one-to-one.�

(b) Prove that if f is not onto and g is one-to-one, then g ◦ f is not onto.

Suppose A, B and C are sets. Suppose f : A → B and g : B → C, f is not onto and g

is one-to-one.

Since f is not onto, there is a b ∈ B such that f(a) 6= b for all a ∈ A.

Suppose g(f(a)) = g(b) for some a ∈ A.

Then, since g is one-to-one, f(a) = b.

This is a contradiction: for all a ∈ A, f(a) 6= b.

Thus, for all a ∈ A, g(f(a)) 6= g(b).

Hence, g ◦ f is not onto. �



6. Let A = R× R \ {(0, 0)}.

Thus, A is the xy-plane without the origin.

Define a relation R on A by

((x1, y1), (x2, y2)) ∈ R ⇔ (x1, y1) and (x2, y2) lie on a line which passes through the origin.

Prove that R is an equivalence relation.

Is R reflexive?

Suppose P ∈ A. Then P = (x1, y1) for some x1, y1 ∈ R.

Suppose x1 = 0. Then P lies on the line x = 0 which passes through the origin.

Hence, (P, P ) ∈ R.

Suppose x1 6= 0. Then P lies on the line y = y1
x1

x, which passes through the origin.

Hence, (P, P ) ∈ R.

Thus, in all cases, (P, P ) ∈ R, so R is reflexive.

Is R symmetric?

Suppose P = (x1, y1) ∈ A and Q = (x2, y2) ∈ A and (P,Q) ∈ R.

Then P and Q lie on a line through the origin, and so Q and P lie on a line through the
origin.

Hence, (Q,P ) ∈ R, and so R is symmetric.

Is R transitive?

Suppose P = (x1, y1) ∈ A and Q = (x2, y2) ∈ A and S = (x3, y3) ∈ A and (P,Q) ∈ R and
(Q,S) ∈ R.

Suppose x1 = 0.

Then P lies on the vertical line x = 0 through the origin and no other line through the
origin.

Hence, Q lies on x = 0, and hence S lies on x = 0.

Thus, P and S lie on a line through the origin, and so (P, S) ∈ R.

Suppose x1 6= 0.

Then P and Q lie on a line y = mx where m ∈ R, and Q and R lie on a line y = nx where
n ∈ R.

Then y2 = mx2 = nx2 so (m− n)x2 = 0.

If x2 = 0, then y2 = mx2 = 0, so Q = (0, 0) 6∈ A, a contradiction since Q ∈ A.

Hence x2 6= 0, so m− n = 0, i.e., m = n.

Thus, P and Q lie on the line y = mx and Q and S lie on the line y = mx, so P and S both
lie on a line through the origin.

Hence, (P, S) inR and thus R is transitive.

Since R is reflexive, symmetric, and transitive, R is an equivalence relation. �


