Math 300 B - Winter 2015
 Final Exam
 March 18, 2015
 Answers

1. Let a and b be integers. Prove that $3 \mid a^{2}+b^{2}$ if and only if $3 \mid a$ and $3 \mid b$.

Let a and b be integers.
By Euclid's theorem, $a=3 k+r$ and $b=3 m+s$ for integers k, m, r and s, with $0 \leq r \leq 2$ and $0 \leq s \leq 2$.
Then

$$
\begin{aligned}
a^{2}+b^{2}=(3 k+r)^{2}+(3 m+s)^{2} & =9 k^{2}+6 k r+r^{2}+9 m^{2}+6 m s+s^{2} \\
& =3\left(3 k^{2}+2 k r+3 m^{2}+2 m s\right)+r^{2}+s^{2}
\end{aligned}
$$

Suppose $a^{2}+b^{2}=3 t$ for some integer t.
Then $r^{2}+s^{2}=3\left(t-\left(3 k^{2}+2 k r+3 m^{2}+2 m s\right)\right)$ and so $r^{2}+s^{2}$ is divisible by 3 .
On the other hand, suppose $r^{2}+s^{2}=3 v$ for some integer v. Then

$$
a^{2}+b^{2}=3\left(\left(3 k^{2}+2 k r+3 m^{2}+2 m s\right)+v\right)
$$

and so $a^{2}+b^{2}$ is divisible by 3 .
Thus, $a^{2}+b^{2}$ is divisible by 3 if and only if $r^{2}+s^{2}$ is divisible by 3 .
We have the following table of possible value of $r^{2}+s^{2}$.

	0	1	2
0	0	1	4
1	1	2	5
2	2	5	8

Since $1,2,4,5$ and 8 are not divisible by 3 , we conclude that $a^{2}+b^{2}$ is divisible by 3 if and only if $r=s=0$; that is, if and only if $3 \mid a$ and $3 \mid b$.
2. Let A and B be sets. Prove that

$$
A \subseteq B
$$

if and only if

$$
\mathcal{P}(A) \subseteq \mathcal{P}(B)
$$

Let A and B be sets.
Suppose $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.
Note that $A \in \mathcal{P}(A)$, so $A \in \mathcal{P}(B)$.
Hence $A \subseteq B$.

Suppose $A \subseteq B$.
Let $x \in \mathcal{P}(A)$.
Then $x \subseteq A$.
Suppose $y \in x$.
Then $y \in A$, and so $y \in B$.
Thus $y \in x$ implies $y \in B$, and hence $x \subset B$.
Thus, $x \in \mathcal{P}(B)$.
Hencer, $x \in \mathcal{P}(A)$ implies $x \in \mathcal{P}(B)$, so $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.
3. Use induction to prove that

$$
\sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{n}{n+1}
$$

for all $n \in \mathbb{Z}_{>0}$.
Let $n \in \mathbb{Z}_{>0}$.
Let $P(n)$ be the statement " $\sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{n}{n+1}$ ".
Base Case: Let $n=1$.
Then

$$
\sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{1}{1(1+1)}=\frac{1}{2}=\frac{1}{1+1}=\frac{n}{n+1}
$$

Thus, $P(1)$ is true.
Induction Step: Suppose $P(n)$ is true for some $n=k>0$.
So $P(k)$ is true. That is,

$$
\sum_{i=1}^{k} \frac{1}{i(i+1)}=\frac{k}{k+1}
$$

Then

$$
\begin{aligned}
\sum_{i=1}^{k+1} \frac{1}{i(i+1)} & =\sum_{i=1}^{k} \frac{1}{i(i+1)}+\frac{1}{(k+1)(k+2)} \\
& =\frac{k}{k+1}+\frac{1}{(k+1)(k+2)} \\
& =\frac{k(k+2)}{(k+1)(k+2)}+\frac{1}{(k+1)(k+2)} \\
& =\frac{k(k+2)+1}{(k+1)(k+2)} \\
& =\frac{k^{2}+2 k+1}{(k+1)(k+2)} \\
& =\frac{(k+1)^{2}}{(k+1)(k+2))} \\
& =\frac{k+1}{k+2}
\end{aligned}
$$

Hence $P(k+1)$ is true.
Thus, $P(k)$ implies $P(k+1)$, and $P(1)$ is true, so, by induction, $P(n)$ is true for all $n \in \mathbb{Z}_{>0}$.
4. Suppose A, B and C are sets with $A \subseteq C$ and $B \subseteq C$. Suppose $A \cap B=\varnothing$, and that $A \sim B$. Prove that

$$
C \backslash A \sim C \backslash B
$$

Suppose A, B and C are sets with $A \subseteq C$ and $B \subseteq C$. Suppose $A \cap B=\varnothing$, and that $A \sim B$.
Then there exists a bijection $f: A \rightarrow B$.
Note that since f is a bijection, $f^{-1}: B \rightarrow A$ is a bijection.
Define a function $g: C \backslash A \rightarrow C \backslash B$ by

$$
g(x)= \begin{cases}x & \text { if } x \notin B \\ f^{-1}(x) & \text { if } x \in B\end{cases}
$$

We prove that g is a bijection.
Suppose $y \in C \backslash B$.
Suppose $y \in A$. Then $f(y) \in B$.
Since $A \cap B=\varnothing, f(y) \in C \backslash A$, and we have $g(f(y))=f^{-1}(f(y))=y$.
Suppose $y \notin A$. Then $y \notin B$, so $g(y)=y$.
Hence, g is surjective.

Suppose $g\left(x_{1}\right)=g\left(x_{2}\right)$.
Suppose $x_{1}, x_{2} \in B$. Then

$$
f^{-1}\left(x_{1}\right)=f^{-1}\left(x_{2}\right)
$$

and so $x_{1}=x_{2}$.
Suppose $x_{1}, x_{2} \notin B$.
Then $g\left(x_{1}\right)=x_{1}=g\left(x_{2}\right)=x_{2}$.
Suppose exactly one of x_{1}, x_{2} is in B.
Without loss of generality, suppose $x_{1} \in B$ and $x_{2} \notin B$.
Then $g\left(x_{1}\right)=f^{-1}\left(x_{1}\right)=g\left(x_{2}\right)=x_{2}$.
Since $x_{2} \in C \backslash A, x_{2} \notin A$.
However, $f^{-1}\left(x_{1}\right) \in A$, and this contradicts the statement $g\left(x_{1}\right)=g\left(x_{2}\right)$.
Thus, g is injective.
Hence, g is a bijection.
5. Suppose A, B and C are sets. Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$.
(a) Prove that if f is onto and g is not one-to-one, then $g \circ f$ is not one-to-one.

Suppose A, B and C are sets. Suppose $f: A \rightarrow B$ and $g: B \rightarrow C, f$ is onto and g is not one-to-one.
Since g is not one-to-one, there exist $b_{1} \neq b_{2} \in B$ such that $g\left(b_{1}\right)=g\left(b_{2}\right)$.
Since f is onto, there exist a_{1} and a_{2} such that $f\left(a_{1}\right)=b_{1}$ and $f\left(a_{2}\right)=b_{2}$.
Note that $a_{1} \neq a_{2}$ since $b_{1} \neq b_{2}$.
Then $g\left(f\left(a_{1}\right)\right)=g\left(b_{1}\right)=g\left(b_{2}\right)=g\left(f\left(a_{2}\right)\right)$, so $g \circ f$ is not one-to-one.
(b) Prove that if f is not onto and g is one-to-one, then $g \circ f$ is not onto.

Suppose A, B and C are sets. Suppose $f: A \rightarrow B$ and $g: B \rightarrow C, f$ is not onto and g is one-to-one.
Since f is not onto, there is a $b \in B$ such that $f(a) \neq b$ for all $a \in A$.
Suppose $g(f(a))=g(b)$ for some $a \in A$.
Then, since g is one-to-one, $f(a)=b$.
This is a contradiction: for all $a \in A, f(a) \neq b$.
Thus, for all $a \in A, g(f(a)) \neq g(b)$.
Hence, $g \circ f$ is not onto.
6. Let $A=\mathbb{R} \times \mathbb{R} \backslash\{(0,0)\}$.

Thus, A is the $x y$-plane without the origin.
Define a relation R on A by
$\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \in R \Leftrightarrow\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ lie on a line which passes through the origin.
Prove that R is an equivalence relation.
Is R reflexive?
Suppose $P \in A$. Then $P=\left(x_{1}, y_{1}\right)$ for some $x_{1}, y_{1} \in \mathbb{R}$.
Suppose $x_{1}=0$. Then P lies on the line $x=0$ which passes through the origin.
Hence, $(P, P) \in R$.
Suppose $x_{1} \neq 0$. Then P lies on the line $y=\frac{y_{1}}{x_{1}} x$, which passes through the origin.
Hence, $(P, P) \in R$.
Thus, in all cases, $(P, P) \in R$, so R is reflexive.

Is R symmetric?

Suppose $P=\left(x_{1}, y_{1}\right) \in A$ and $Q=\left(x_{2}, y_{2}\right) \in A$ and $(P, Q) \in R$.
Then P and Q lie on a line through the origin, and so Q and P lie on a line through the origin.
Hence, $(Q, P) \in R$, and so R is symmetric.
Is R transitive?
Suppose $P=\left(x_{1}, y_{1}\right) \in A$ and $Q=\left(x_{2}, y_{2}\right) \in A$ and $S=\left(x_{3}, y_{3}\right) \in A$ and $(P, Q) \in R$ and $(Q, S) \in R$.
Suppose $x_{1}=0$.
Then P lies on the vertical line $x=0$ through the origin and no other line through the origin.
Hence, Q lies on $x=0$, and hence S lies on $x=0$.
Thus, P and S lie on a line through the origin, and so $(P, S) \in R$.
Suppose $x_{1} \neq 0$.
Then P and Q lie on a line $y=m x$ where $m \in \mathbb{R}$, and Q and R lie on a line $y=n x$ where $n \in \mathbb{R}$.
Then $y_{2}=m x_{2}=n x_{2}$ so $(m-n) x_{2}=0$.
If $x_{2}=0$, then $y_{2}=m x_{2}=0$, so $Q=(0,0) \notin A$, a contradiction since $Q \in A$.
Hence $x_{2} \neq 0$, so $m-n=0$, i.e., $m=n$.
Thus, P and Q lie on the line $y=m x$ and Q and S lie on the line $y=m x$, so P and S both lie on a line through the origin.
Hence, (P, S) in R and thus R is transitive.
Since R is reflexive, symmetric, and transitive, R is an equivalence relation.

