Math 300 E - Winter 2019
 Final Exam March 18, 2019

\qquad
\qquad

Signature:

1	10	
2	10	
3	10	
4	10	
5	9	
6	10	
Total	59	

- You have 110 minutes to complete the exam.

1. Let A, B, and C be sets. Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$.
(a) Prove that, if $g \circ f$ is one-to-one, then f is one-to-one.
(b) Give an example to show that, if $g \circ f$ is one-to-one, g need not be one-to-one.
2. Use induction to prove that $2^{n}>n^{2}$ for all integers $n \geq 5$.
3. (a) Let m be a positive integer.

Suppose a, b, c and d are integers and $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$. Prove that $a c \equiv b d(\bmod m)$.
(b) Prove that $11 \mid 4^{1234}-3$.
4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}\frac{1}{2} x+3 & \text { if } x \geq 0 \\ 5 x+3 & \text { if } x<0\end{cases}
$$

Prove that f is a bijection from \mathbb{R} to \mathbb{R}.
5. Let $A=\{a, b, c\}$. Give an example of each of the following.
(a) An equivalence relation on A.
(b) A relation on A that is reflexive but not symmetric.
(c) A relation on A that is a function whose inverse is not a function.
6. Let A and B be sets. Prove that $A \cap B=\varnothing$ if and only if $\mathcal{P}(A) \cap \mathcal{P}(B)=\{\varnothing\}$.

Axioms of the Integers (AIs)
Suppose a, b, and c are integers.

- Closure:
$a+b$ and $a b$ are integers.
- Substitution of Equals:

If $a=b$, then $a+c=b+c$ and $a c=b c$.

- Commutativity:
$a+b=b+a$ and $a b=b a$.

- Associativity:

$(a+b)+c=a+(b+c)$ and $(a b) c=$ $a(b c)$.

- The Distributive Law:

$a(b+c)=a b+a c$

- Identities:

$a+0=0+a=a$ and $a \cdot 1=1 \cdot a=a$ 0 is called the additive identity
1 is called the multiplicative identity.

- Additive Inverses:

There exists an integer $-a$ such that $a+(-a)=(-a)+a=0$.

- Trichotomy:

Exactly one of the following is true: $a<0,-a<0$, or $a=0$.

Sets

$A \subseteq B$ iff $x \in A$ implies $x \in B$ $A=B$ iff $A \subseteq B$ and $B \subseteq A$ $x \in A \cup B$ iff $x \in A$ or $x \in B$ $x \in A \cap B$ iff $x \in A$ and $x \in B$ $x \in A \backslash B$ iff $x \in A$ and $x \notin B$ $\mathcal{P}(A)$ is the set of all subsets of a set A

Elementary Properties of the Integers (EPIs)
Suppose a, b, c, and d are integers.

1. $a \cdot 0=0$
2. If $a+c=b+c$, then $a=b$.
3. $-a=(-1) \cdot a$
4. $(-a) \cdot b=-(a \cdot b)$
5. $(-a) \cdot(-b)=a \cdot b$
6. If $a \cdot b=0$, then $a=0$ or $b=0$.
7. If $a \leq b$ and $b \leq a$, then $a=b$.
8. If $a<b$ and $b<c$, then $a<c$.
9. If $a<b$, then $a+c<b+c$.
10. If $a<b$ and $0<c$, then $a c<b c$.
11. If $a<b$ and $c<0$, then $b c<a c$.
12. If $a<b$ and $c<d$, then $a+c<b+d$.
13. If $0 \leq a<b$ and $0 \leq c<d$, then $a c<b d$.
14. If $a<b$, then $-b<-a$.
15. $0 \leq a^{2}$
16. If $a b=1$, then either $a=b=1$ or $a=b=$ -1 .

NOTE: Properties $8-14$ hold if each $<$ is replaced with \leq.
One theorem for reference:
Theorem DAS (Divisors are Smaller): Let a and b be positive integers. Then $a \mid b$ implies $a \leq b$.

