Math 300 E - Winter 2019 Final Exam March 18, 2019

Name: _____

Student ID no. : _____

Signature: _____

1	10	
2	10	
3	10	
4	10	
5	9	
6	10	
Total	59	

• You have 110 minutes to complete the exam.

- 1. Let A, B, and C be sets. Suppose $f : A \to B$ and $g : B \to C$.
 - (a) Prove that, if $g \circ f$ is one-to-one, then f is one-to-one.

(b) Give an example to show that, if $g \circ f$ is one-to-one, g need not be one-to-one.

2. Use induction to prove that $2^n > n^2$ for all integers $n \ge 5$.

3. (a) Let m be a positive integer.

Suppose a, b, c and d are integers and $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Prove that $ac \equiv bd \pmod{m}$.

(b) Prove that $11 \mid 4^{1234} - 3$.

4. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} \frac{1}{2}x + 3 & \text{if } x \ge 0\\ 5x + 3 & \text{if } x < 0. \end{cases}$$

Prove that *f* is a bijection from \mathbb{R} to \mathbb{R} .

- 5. Let $A = \{a, b, c\}$. Give an example of each of the following.
 - (a) An equivalence relation on *A*.

(b) A relation on *A* that is reflexive but not symmetric.

(c) A relation on *A* that is a function whose inverse is not a function.

6. Let *A* and *B* be sets. Prove that $A \cap B = \emptyset$ if and only if $\mathcal{P}(A) \cap \mathcal{P}(B) = \{\emptyset\}$.

Axioms of the Integers (AIs) Suppose <i>a</i> , <i>b</i> , and <i>c</i> are integers.	Elementary Properties of the Integers (EPIs) Suppose <i>a</i> , <i>b</i> , <i>c</i> , and <i>d</i> are integers.	
• Closure:	1. $a \cdot 0 = 0$	
a + b and ab are integers.	2. If $a + c = b + c$, then $a = b$.	
• Substitution of Equals:	3. $-a = (-1) \cdot a$	
If $a = b$, then $a + c = b + c$ and $ac = bc$.	$4. \ (-a) \cdot b = -(a \cdot b)$	
• Commutativity: a + b = b + a and $ab = ba$.	5. $(-a) \cdot (-b) = a \cdot b$	
Associativity:	6. If $a \cdot b = 0$, then $a = 0$ or $b = 0$.	
(a+b) + c = a + (b+c) and $(ab)c = a(bc)$.	7. If $a \leq b$ and $b \leq a$, then $a = b$.	
	8. If $a < b$ and $b < c$, then $a < c$.	
• The Distributive Law:	9. If $a < b$, then $a + c < b + c$.	
a(b+c) = ab + ac	10. If $a < b$ and $0 < c$, then $ac < bc$. 11. If $a < b$ and $c < 0$, then $bc < ac$. 12. If $a < b$ and $c < d$, then $a + c < b + d$.	
• Identities:		
$a + 0 = 0 + a = a$ and $a \cdot 1 = 1 \cdot a = a$ 0 is called the <i>additive identity</i>		
1 is called the <i>multiplicative identity</i> .	13. If $0 \le a < b$ and $0 \le c < d$, then $ac < bd$.	
Additive Inverses:	14. If $a < b$, then $-b < -a$.	
There exists an integer $-a$ such that $a + (-a) = (-a) + a = 0$.	15. $0 \le a^2$	
• Trichotomy:	16. If $ab = 1$, then either $a = b = 1$ or $a = b = -1$.	
Exactly one of the following is true: $a < 0, -a < 0$, or $a = 0$.	NOTE: Properties 8-14 hold if each $<$ is replaced with \leq .	
Sets	One theorem for reference: Theorem DAS (Divisors are Smaller): Let a and b be positive integers. Then $a b$ implies $a \le b$.	
$A \subseteq B$ iff $x \in A$ implies $x \in B$		
$A = B \text{ iff } A \subseteq B \text{ and } B \subseteq A$		
$x \in A \cup B$ iff $x \in A$ or $x \in B$		
$x \in A \cap B$ iff $x \in A$ and $x \in B$		
$x \in A \setminus B$ iff $x \in A$ and $x \notin B$		

 $\mathcal{P}(A)$ is the set of all subsets of a set A