Math 300 E - Winter 2019 Final Exam March 18, 2019 Answers

1. Let A, B, and C be sets. Suppose $f : A \to B$ and $g : B \to C$.

- (a) Prove that, if $g \circ f$ is one-to-one, then f is one-to-one. **Proof:** Suppose $f(x_1) = f(x_2)$ for some x_1 and $x_2 \in A$. Then $g(f(x_1)) = g(f(x_2))$. Since $g \circ f$ is one-to-one, $x_1 = x_2$. Hence, $f(x_1) = f(x_2)$ implies $x_1 = x_2$, and so f is one-to-one.
- (b) Give an example to show that, if $g \circ f$ is one-to-one, g need not be one-to-one. **Proof:** Let $A = \{a\}, B = \{b_1, b_2\}$, and C = c. Let $f = \{(a, b_1)\}$, and $g = \{(b_1, c), (b_2, c)\}$. Then $f : A \to B$ and $g : B \to C$. Further, $g \circ f = \{(a, c)\}$ is one-to-one, but g is not one-to-one.
- 2. Use induction to prove that $2^n > n^2$ for all integers $n \ge 5$.

Proof: Let P(n) be the statement " $2^n < n^{2}$ ". Base case: Let n = 5. Then $2^n = 2^5 = 32 > 25 = 5^2 = n^2$. Hence, P(5) is true. Induction case: Suppose P(k) is true for some $k \in \mathbb{Z}_{\geq 5}$.

Then $2^k > k^2$.

We need to show that $2^{k+1} > (k+1)^2$. (There are many ways to do this: this answer just shows one of them! The important thing is that you can come up with a way to show it.) We have

$$2^{k+1} = 2 \cdot 2^k$$

> $2k^2$
= $k^2 + k^2$
 $\ge k^2 + 5k$ since $k \ge 5$
= $k^2 + 2k + 3k$
 $\ge k^2 + 2k + 15$ since $k \ge 5$
> $k^2 + 2k + 1$
= $(k + 1)^2$.

Thus, $2^{k+1} > k^2$.

Hence, P(k) implies P(k + 1).

Therefore, since P(k) implies P(k+), and P(5) is true, P(n) is true for all $n \in \mathbb{Z}_{\geq 5}$.

3. (a) Let *m* be a positive integer.

Suppose a, b, c and d are integers and $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Prove that $ac \equiv bd \pmod{m}$.

Proof:

Since $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, we have

 $m \mid (b-a)$ and $m \mid (d-c)$.

Therefore, there exist integers *s* and *t* with b - a = ms and d - c = mt. Hence, a = b - ms and c = d - mt, and so

$$ac = (b - ms)(d - mt)$$

= $bd - dsm + btm + m^2t$
= $bd + m(bt - ds + mt).$

Hence, ac - bd = m(bt - ds + mt), and since bt - ds + mt is an integer, we conclude that *m* divides ac - bd.

Thus, $ac \equiv bd \pmod{m}$.

(b) *Prove that* $11 \mid 4^{1234} - 3$. **Proof:** We begin by investigating powers of 4 modulo 11:

$$4^{1} \equiv 4 \pmod{11}$$
$$4^{2} \equiv 5 \pmod{11}$$
$$4^{3} \equiv 9 \pmod{11}$$
$$4^{4} \equiv 3 \pmod{11}$$
$$4^{5} \equiv 1 \pmod{11}$$

Since $1234 = 5 \cdot 246 + 4$, we have

$$4^{1234} = (4^5)^{246} \cdot 4^4 \equiv 4^4 \equiv 3 \pmod{11}.$$

Thus $11 \mid 4^{1234} - 3$.

4. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} \frac{1}{2}x + 3 & \text{if } x \ge 0\\ 5x + 3 & \text{if } x < 0. \end{cases}$$

Prove that f *is a bijection from* \mathbb{R} *to* \mathbb{R} *.*

Proof:

Let $y \in \mathbb{R}$. Suppose $y \ge 3$. Let $\hat{x} = 2(y - 3)$. Then $\hat{x} \ge 0$, and $f(\hat{x}) = f(2(y-3)) = \frac{1}{2}(2(y-3)) + 3 = y$. Suppose y < 3. Let $\hat{x} = \frac{1}{5}(y-3)$. Then $\hat{x} < 0$ and $f(\hat{x}) = f(\frac{1}{5}(y-3)) = 5(\frac{1}{5}(y-3)) + 3 = y$. Hence, for all $y \in \mathbb{R}$ there exists $\hat{x} \in \mathbb{R}$ with $f(\hat{x}) = y$, so f is surjective. If $x \ge 0$, then $f(x) = \frac{1}{2}x + 3 \ge 0 + 3 = 3$. If x < 0, then f(x) = 5x + 3 < 0 + 3 = 3. Suppose $f(x_1) = f(x_2)$ for some $x_1, x_2 \in \mathbb{R}$. Suppose $f(x_1) > 3$. Then $f(x_1) = \frac{1}{2}x_1 + 3 = \frac{1}{2}x_2 + 3$. Then $\frac{1}{2}x_1 = \frac{1}{2}x_2$, so $x_1 = x_2$. Suppose $f(x_1) < 3$. Then $f(x_1) = 5x_1 + 3 = 5x_2 + 3$. Then $5x_1 = 5x_2$, and so $x_1 = x_2$. Hence, $f(x_1) = f(x_2)$ implies $x_1 = x_2$, so f is one-to-one.

Since *f* is one-to-one, and *f* is surjective, *f* is a bijection from \mathbb{R} to \mathbb{R} .

- 5. Let $A = \{a, b, c\}$. Give an example of each of the following.
 - (a) An equivalence relation on A.The simplest possible example is {(a, a), (b, b), (c, c)}.
 - (b) A relation on A that is reflexive but not symmetric. One example is {(a, a), (b, b), (c, c), (a, b)}.
 - (c) A relation on A that is a function whose inverse is not a function. One example is {(*a*, *a*), (*b*, *b*), (*c*, *b*)}.

6. Let A and B be sets. Prove that $A \cap B = \emptyset$ if and only if $\mathcal{P}(A) \cap \mathcal{P}(B) = \{\emptyset\}$.

Proof:

Suppose $A \cap B \neq \emptyset$. Then there exists an $x \in A \cap B$. Then $x \in A$, so $\{x\} \subseteq A$, i.e., $\{x\} \in \mathcal{P}(A)$. Also, $x \in B$, so $\{x\} \subseteq B$, i.e., $\{x\}in\mathcal{P}(B)$. Hence, $\{x\} \in \mathcal{P}(A) \cap \mathcal{P}(B)$, and, since $\{x\} \neq \emptyset$, we conclude that $\mathcal{P}(A) \cap \mathcal{P}(B) \neq \{\emptyset\}$.

Now, suppose $\mathcal{P}(A) \cap \mathcal{P}(B) \neq \{\emptyset\}$. Then there exists $s \in \mathcal{P}(A) \cap \mathcal{P}(B)$ such that $S \neq \emptyset$. Hence, there exists $x \in S$. Then $S \in \mathcal{P}(A)$, i.e., $S \subseteq A$, and so $x \in A$. Similarly, $S \in \mathcal{P}(B)$, i.e., $S \subseteq B$, and so $x \in B$. Thus $x \in A \cap B$, so $A \cap B \neq \emptyset$.