Math 300 E - Winter 2019
 Final Exam
 March 18, 2019
 Answers

1. Let A, B, and C be sets. Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$.
(a) Prove that, if $g \circ f$ is one-to-one, then f is one-to-one.

Proof: Suppose $f\left(x_{1}\right)=f\left(x_{2}\right)$ for some x_{1} and $x_{2} \in A$.
Then $g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)$.
Since $g \circ f$ is one-to-one, $x_{1}=x_{2}$.
Hence, $f\left(x_{1}\right)=f\left(x_{2}\right)$ implies $x_{1}=x_{2}$, and so f is one-to-one.
(b) Give an example to show that, if $g \circ f$ is one-to-one, g need not be one-to-one.

Proof: Let $A=\{a\}, B=\left\{b_{1}, b_{2}\right\}$, and $C=c$.
Let $f=\left\{\left(a, b_{1}\right)\right\}$, and $g=\left\{\left(b_{1}, c\right),\left(b_{2}, c\right)\right\}$.
Then $f: A \rightarrow B$ and $g: B \rightarrow C$.
Further, $g \circ f=\{(a, c)\}$ is one-to-one, but g is not one-to-one.
2. Use induction to prove that $2^{n}>n^{2}$ for all integers $n \geq 5$.

Proof: Let $P(n)$ be the statement " $2^{n}<n^{2}$ ".
Base case: Let $n=5$.
Then $2^{n}=2^{5}=32>25=5^{2}=n^{2}$.
Hence, $P(5)$ is true.
Induction case: Suppose $P(k)$ is true for some $k \in \mathbb{Z}_{\geq 5}$.
Then $2^{k}>k^{2}$.
We need to show that $2^{k+1}>(k+1)^{2}$. (There are many ways to do this: this answer just shows one of them! The important thing is that you can come up with a way to show it.) We have

$$
\begin{aligned}
2^{k+1} & =2 \cdot 2^{k} \\
& >2 k^{2} \\
& =k^{2}+k^{2} \\
& \geq k^{2}+5 k \text { since } k \geq 5 \\
& =k^{2}+2 k+3 k \\
& \geq k^{2}+2 k+15 \text { since } k \geq 5 \\
& >k^{2}+2 k+1 \\
& =(k+1)^{2} .
\end{aligned}
$$

Thus, $2^{k+1}>k^{2}$.
Hence, $P(k)$ implies $P(k+1)$.
Therefore, since $P(k)$ implies $P(k+)$, and $P(5)$ is true, $P(n)$ is true for all $n \in \mathbb{Z}_{\geq 5}$.
3. (a) Let m be a positive integer.

Suppose a, b, c and d are integers and $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$.
Prove that $a c \equiv b d(\bmod m)$.
Proof:
Since $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, we have

$$
m \mid(b-a) \text { and } m \mid(d-c) .
$$

Therefore, there exist integers s and t with $b-a=m s$ and $d-c=m t$.
Hence, $a=b-m s$ and $c=d-m t$, and so

$$
\begin{aligned}
a c & =(b-m s)(d-m t) \\
& =b d-d s m+b t m+m^{2} t \\
& =b d+m(b t-d s+m t) .
\end{aligned}
$$

Hence, $a c-b d=m(b t-d s+m t)$, and since $b t-d s+m t$ is an integer, we conclude that m divides $a c-b d$.
Thus, $a c \equiv b d(\bmod m)$.
(b) Prove that $11 \mid 4^{1234}-3$. Proof: We begin by investigating powers of 4 modulo 11:

$$
\begin{aligned}
4^{1} & \equiv 4(\bmod 11) \\
4^{2} & \equiv 5(\bmod 11) \\
4^{3} & \equiv 9(\bmod 11) \\
4^{4} & \equiv 3(\bmod 11) \\
4^{5} & \equiv 1(\bmod 11)
\end{aligned}
$$

Since $1234=5 \cdot 246+4$, we have

$$
4^{1234}=\left(4^{5}\right)^{246} \cdot 4^{4} \equiv 4^{4} \equiv 3(\bmod 11)
$$

Thus $11 \mid 4^{1234}-3$.
4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}\frac{1}{2} x+3 & \text { if } x \geq 0 \\ 5 x+3 & \text { if } x<0\end{cases}
$$

Prove that f is a bijection from \mathbb{R} to \mathbb{R}.

Proof:

Let $y \in \mathbb{R}$.
Suppose $y \geq 3$.
Let $\hat{x}=2(y-3)$.
Then $\hat{x} \geq 0$, and $f(\hat{x})=f(2(y-3))=\frac{1}{2}(2(y-3))+3=y$.
Suppose $y<3$.
Let $\hat{x}=\frac{1}{5}(y-3)$.
Then $\hat{x}<0$ and $f(\hat{x})=f\left(\frac{1}{5}(y-3)\right)=5\left(\frac{1}{5}(y-3)\right)+3=y$.
Hence, for all $y \in \mathbb{R}$ there exists $\hat{x} \in \mathbb{R}$ with $f(\hat{x})=y$, so f is surjective.
If $x \geq 0$, then $f(x)=\frac{1}{2} x+3 \geq 0+3=3$.
If $x<0$, then $f(x)=5 x+3<0+3=3$.
Suppose $f\left(x_{1}\right)=f\left(x_{2}\right)$ for some $x_{1}, x_{2} \in \mathbb{R}$.
Suppose $f\left(x_{1}\right) \geq 3$.
Then $f\left(x_{1}\right)=\frac{1}{2} x_{1}+3=\frac{1}{2} x_{2}+3$.
Then $\frac{1}{2} x_{1}=\frac{1}{2} x_{2}$, so $x_{1}=x_{2}$.
Suppose $f\left(x_{1}\right)<3$.
Then $f\left(x_{1}\right)=5 x_{1}+3=5 x_{2}+3$.
Then $5 x_{1}=5 x_{2}$, and so $x_{1}=x_{2}$.
Hence, $f\left(x_{1}\right)=f\left(x_{2}\right)$ implies $x_{1}=x_{2}$, so f is one-to-one.
Since f is one-to-one, and f is surjective, f is a bijection from \mathbb{R} to \mathbb{R}.
5. Let $A=\{a, b, c\}$. Give an example of each of the following.
(a) An equivalence relation on A.

The simplest possible example is $\{(a, a),(b, b),(c, c)\}$.
(b) A relation on A that is reflexive but not symmetric.

One example is $\{(a, a),(b, b),(c, c),(a, b)\}$.
(c) A relation on A that is a function whose inverse is not a function.

One example is $\{(a, a),(b, b),(c, b)\}$.
6. Let A and B be sets. Prove that $A \cap B=\varnothing$ if and only if $\mathcal{P}(A) \cap \mathcal{P}(B)=\{\varnothing\}$.

Proof:
Suppose $A \cap B \neq \varnothing$.
Then there exists an $x \in A \cap B$.
Then $x \in A$, so $\{x\} \subseteq A$, i.e., $\{x\} \in \mathcal{P}(A)$.
Also, $x \in B$, so $\{x\} \subseteq B$, i.e., $\{x\} \operatorname{in\mathcal {P}}(B)$.
Hence, $\{x\} \in \mathcal{P}(A) \cap \mathcal{P}(B)$, and, since $\{x\} \neq \varnothing$, we conclude that $\mathcal{P}(A) \cap \mathcal{P}(B) \neq\{\varnothing\}$.
Now, suppose $\mathcal{P}(A) \cap \mathcal{P}(B) \neq\{\varnothing\}$.
Then there exists $s \in \mathcal{P}(A) \cap \mathcal{P}(B)$ such that $S \neq \varnothing$.
Hence, there exists $x \in S$.
Then $S \in \mathcal{P}(A)$, i.e., $S \subseteq A$, and so $x \in A$.
Similarly, $S \in \mathcal{P}(B)$, i.e., $S \subseteq B$, and so $x \in B$.
Thus $x \in A \cap B$, so $A \cap B \neq \varnothing$.

