Math 300 D - Autumn 2014 Midterm Exam Number Two November 12, 2014

Name: _____

Student ID no. : _____

Signature: _____

1	10	
2	10	
3	10	
4	5	
5	5	
Total	40	

- Complete all five questions.
- You have 50 minutes to complete the exam.

1. Let *a* and *b* be integers. Prove that $x = a^2 + ab + b$ is odd iff *a* is odd or *b* is odd.

2. Let $S = \mathbb{R}_{>0} \times \mathbb{R}_{>0}$. Define a relation $R \subseteq S \times S$ by

$$((x_1, y_1), (x_2, y_2)) \in R \Leftrightarrow x_1 y_1 = x_2 y_2.$$

(a) Prove that *R* is an equivalence relation.

(b) Notice that elements of $S \times S$ can be viewed as points in the first quadrant of the *xy*-plane (i.e., the set of points (x, y) where x > 0 and y > 0.) Draw a picture of one equivalence class in $S \times S/R$ and indicate which equivalence class it is.

3. Let *A* and *B* be sets. Prove that A = B iff $\mathcal{P}(A) = \mathcal{P}(B)$.

4. Prove that $\sqrt{2} + \sqrt{3}$ is an algebraic number.

5. Let \mathcal{F} be a family of sets, and B be a set. Prove that if $\bigcup \mathcal{F} \subseteq B$, then $\mathcal{F} \subseteq \mathcal{P}(B)$.

Axioms Elementary Properties of Real Numbers

Suppose x, y, and z are real numbers. We will take as fact each of the following.

- 1. x + y and xy are real numbers. (\mathbb{R} is *closed* under addition and multiplication.)
- 2. If x = y, then x + z = y + z and xz = yz. (This is sometimes called *substitution of equals*.)
- 3. x + y = y + x and xy = yx (addition and multiplication are *commutative* in \mathbb{R})
- 4. (x+y)+z = x+(y+z) and (xy)z = x(yz) (addition and multiplication are *associa*-*tive* in ℝ)
- 5. x(y+z) = xy+xz (This is the *Distributive Law*.)
- 6. x + 0 = 0 + x = x and $x \cdot 1 = 1 \cdot x = x$ (0 is the *additive identity*; 1 is the *multiplicative identity*.)
- 7. There exists a real number -x such that x + (-x) = (-x) + x = 0. (That is, every real number has an *additive inverse* in \mathbb{R} .)
- 8. If $x \neq 0$, then there exists a real number x^{-1} such that $x \cdot x^{-1} = x^{-1} \cdot x = 1$. (That is, every non-zero real number has a *multiplicative inverse* in \mathbb{R} .)
- 9. If x > 0 and y > 0, then x + y > 0 and xy > 0.
- 10. Either x > 0, -x > 0, or x = 0.
- 11. If x and y are integers, then -x, x+y, and xy are integers. (The additive inverse of an integer is an integer and \mathbb{Z} is closed under addition and multiplication.)

<u>NOTE</u>: It is not hard to prove that \mathbb{Q} , the set of rational numbers is closed under addition and multiplication and that every non-zero rational number has a multiplicative inverse in \mathbb{Q} .

The following properties of real numbers that allow us to do algebra follow from the axioms on the left.

- If *x*, *y*, *z*, *u*, and *v* are real numbers, then:
 - 1. $x \cdot 0 = 0$ 2. If x + z = y + z, then x = y. 3. If $x \cdot z = y \cdot z$ and $z \neq 0$, then x = y. 4. $-x = (-1) \cdot x$ 5. $(-x) \cdot y = -(x \cdot y)$ 6. $(-x) \cdot (-y) = x \cdot y$ 7. If $x \cdot y = 0$, then x = 0 or y = 0. 8. If $x \leq y$ and $y \leq x$, then x = y. 9. If $x \leq y$ and $y \leq z$, then $x \leq z$.
 - 10. At least one of the following is true: $x \le y$ or $y \le x$.
 - 11. If $x \le y$, then $x + z \le y + z$.
 - 12. If $x \le y$ and $0 \le z$, then $xz \le yz$.
 - 13. If $x \le y$ and $z \le 0$, then $yz \le xz$.
 - 14. If $x \le y$ and $u \le v$, then $x + u \le y + v$.
 - 15. If $0 \le x \le y$ and $0 \le u \le v$, then $xu \le yv$.
 - 16. If $x \leq y$, then $-y \leq -x$.
 - 17. $0 \le x^2$
 - 18. 0 < 1
 - 19. If 0 < x, then $0 < x^{-1}$.
 - 20. If 0 < x < y, then $0 < y^{-1} < x^{-1}$.

And here are a couple of properties of integers.

- 21. Every integer is either even or odd, never both.
- 22. The only integers that divide 1 are -1 and 1.

DeMorgan's laws

 $\neg (P \wedge Q)$ is equivalent to $\neg P \vee \neg Q$

 $\neg (P \lor Q)$ is equivalent to $\neg P \land \neg Q$

Commutative Laws

 $P \wedge Q$ is equivalent to $Q \wedge P$

 $P \lor Q$ is equivalent to $Q \lor P$

Associative Laws

 $P \wedge (Q \wedge R)$ is equivalent to $(P \wedge Q) \wedge R$

 $P \lor (Q \lor R)$ is equivalent to $(P \lor Q) \lor R$

Idempotent Laws

 $P \wedge P$ is equivalent to P

 $P \lor P$ is equivalent to P

Distributive Laws

 $P \land (Q \lor R)$ is equivalent to $(P \land Q) \lor (P \land R)$

 $P \lor (Q \land R)$ is equivalent to $(P \lor Q) \land (P \lor R)$

Absorption Laws

 $P \lor (P \land Q)$ is equivalent to P

 $P \wedge (P \vee Q)$ is equivalent to P

Double Negation Law

 $\neg \neg P$ is equivalent to *P*

Tautology Laws

 $P \land$ (a tautology) is equivalent to P $P \lor$ (a tautology) is a tautology \neg (a tautology) is a contradiction Contradiction Laws $P \land$ (a contradiction) is a contradiction $P \lor$ (a contradiction) is equivalent to P \neg (a contradiction) is a tautology Conditional Laws

 $P \rightarrow Q$ is equivalent to $\neg P \lor Q$

 $P \rightarrow Q$ is equivalent to $\neg (P \land \neg Q)$

Contrapositive Laws

 $P \rightarrow Q$ is equivalent to $\neg Q \rightarrow \neg P$

Quantifier Negation Laws

 $\neg \exists x P(x)$ is equivalent to $\forall x \neg P(x)$

 $\neg \forall x P(x)$ is equivalent to $\exists x \neg P(x)$

Sets

 $A = B \Leftrightarrow ((x \in A) \Leftrightarrow (x \in B))$ $x \in A \cup B \Leftrightarrow ((x \in A) \lor (x \in B))$ $x \in A \cap B \Leftrightarrow ((x \in A) \land (x \in B))$ $x \in A \setminus B \Leftrightarrow (x \in A) \land (x \notin B)$