Math 300 D - Autumn 2014 Midterm Exam Number Two November 12, 2014

\qquad
\qquad

Signature: \qquad

1	10	
2	10	
3	10	
4	5	
5	5	
Total	40	

- Complete all five questions.
- You have 50 minutes to complete the exam.

1. Let a and b be integers. Prove that $x=a^{2}+a b+b$ is odd iff a is odd or b is odd.
2. Let $S=\mathbb{R}_{>0} \times \mathbb{R}_{>0}$. Define a relation $R \subseteq S \times S$ by

$$
\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \in R \Leftrightarrow x_{1} y_{1}=x_{2} y_{2} .
$$

(a) Prove that R is an equivalence relation.
(b) Notice that elements of $S \times S$ can be viewed as points in the first quadrant of the $x y$-plane (i.e., the set of points (x, y) where $x>0$ and $y>0$.) Draw a picture of one equivalence class in $S \times S / R$ and indicate which equivalence class it is.
3. Let A and B be sets. Prove that $A=B$ iff $\mathcal{P}(A)=\mathcal{P}(B)$.
4. Prove that $\sqrt{2}+\sqrt{3}$ is an algebraic number.
5. Let \mathcal{F} be a family of sets, and B be a set. Prove that if $\bigcup \mathcal{F} \subseteq B$, then $\mathcal{F} \subseteq \mathcal{P}(B)$.

Elementary Properties of Real Numbers

Suppose x, y, and z are real numbers. We will take as fact each of the following.

1. $x+y$ and $x y$ are real numbers. (\mathbb{R} is closed under addition and multiplication.)
2. If $x=y$, then $x+z=y+z$ and $x z=y z$. (This is sometimes called substitution of equals.)
3. $x+y=y+x$ and $x y=y x$ (addition and multiplication are commutative in \mathbb{R})
4. $(x+y)+z=x+(y+z)$ and $(x y) z=x(y z)$ (addition and multiplication are associative in \mathbb{R})
5. $x(y+z)=x y+x z$ (This is the Distributive Law.)
6. $x+0=0+x=x$ and $x \cdot 1=1 \cdot x=x(0$ is the additive identity; 1 is the multiplicative identity.)
7. There exists a real number $-x$ such that $x+(-x)=(-x)+x=0$. (That is, every real number has an additive inverse in \mathbb{R}.)
8. If $x \neq 0$, then there exists a real number x^{-1} such that $x \cdot x^{-1}=x^{-1} \cdot x=1$. (That is, every non-zero real number has a multiplicative inverse in \mathbb{R}.)
9. If $x>0$ and $y>0$, then $x+y>0$ and $x y>0$.
10. Either $x>0,-x>0$, or $x=0$.
11. If x and y are integers, then $-x, x+y$, and $x y$ are integers. (The additive inverse of an integer is an integer and \mathbb{Z} is closed under addition and multiplication.)

NOTE: It is not hard to prove that \mathbb{Q}, the set of rational numbers is closed under addition and multiplication and that every non-zero rational number has a multiplicative inverse in \mathbb{Q}.

The following properties of real numbers that allow us to do algebra follow from the axioms on the left.

If x, y, z, u, and v are real numbers, then:

1. $x \cdot 0=0$
2. If $x+z=y+z$, then $x=y$.
3. If $x \cdot z=y \cdot z$ and $z \neq 0$, then $x=y$.
4. $-x=(-1) \cdot x$
5. $(-x) \cdot y=-(x \cdot y)$
6. $(-x) \cdot(-y)=x \cdot y$
7. If $x \cdot y=0$, then $x=0$ or $y=0$.
8. If $x \leq y$ and $y \leq x$, then $x=y$.
9. If $x \leq y$ and $y \leq z$, then $x \leq z$.
10. At least one of the following is true: $x \leq$ y or $y \leq x$.
11. If $x \leq y$, then $x+z \leq y+z$.
12. If $x \leq y$ and $0 \leq z$, then $x z \leq y z$.
13. If $x \leq y$ and $z \leq 0$, then $y z \leq x z$.
14. If $x \leq y$ and $u \leq v$, then $x+u \leq y+v$.
15. If $0 \leq x \leq y$ and $0 \leq u \leq v$, then $x u \leq y v$.
16. If $x \leq y$, then $-y \leq-x$.
17. $0 \leq x^{2}$
18. $0<1$
19. If $0<x$, then $0<x^{-1}$.
20. If $0<x<y$, then $0<y^{-1}<x^{-1}$.

And here are a couple of properties of integers.
21. Every integer is either even or odd, never both.
22. The only integers that divide 1 are -1 and 1.

DeMorgan's laws
$\neg(P \wedge Q)$ is equivalent to $\neg P \vee \neg Q$
$\neg(P \vee Q)$ is equivalent to $\neg P \wedge \neg Q$
Commutative Laws
$P \wedge Q$ is equivalent to $Q \wedge P$
$P \vee Q$ is equivalent to $Q \vee P$
Associative Laws
$P \wedge(Q \wedge R)$ is equivalent to $(P \wedge Q) \wedge R$
$P \vee(Q \vee R)$ is equivalent to $(P \vee Q) \vee R$ Idempotent Laws
$P \wedge P$ is equivalent to P
$P \vee P$ is equivalent to P
Distributive Laws
$P \wedge(Q \vee R)$ is equivalent to $(P \wedge Q) \vee(P \wedge R)$
$P \vee(Q \wedge R)$ is equivalent to $(P \vee Q) \wedge(P \vee R)$
Absorption Laws
$P \vee(P \wedge Q)$ is equivalent to P
$P \wedge(P \vee Q)$ is equivalent to P
Double Negation Law
$\neg \neg P$ is equivalent to P
Tautology Laws
$P \wedge$ (a tautology) is equivalent to P
$P \vee($ a tautology $)$ is a tautology
$\neg($ a tautology $)$ is a contradiction
Contradiction Laws
$P \wedge$ (a contradiction) is a contradiction
$P \vee$ (a contradiction) is equivalent to P
\neg (a contradiction) is a tautology

Conditional Laws

$P \rightarrow Q$ is equivalent to $\neg P \vee Q$
$P \rightarrow Q$ is equivalent to $\neg(P \wedge \neg Q)$
Contrapositive Laws
$P \rightarrow Q$ is equivalent to $\neg Q \rightarrow \neg P$
Quantifier Negation Laws
$\neg \exists x P(x)$ is equivalent to $\forall x \neg P(x)$
$\neg \forall x P(x)$ is equivalent to $\exists x \neg P(x)$
Sets

$$
\begin{gathered}
A=B \Leftrightarrow((x \in A) \Leftrightarrow(x \in B)) \\
x \in A \cup B \Leftrightarrow((x \in A) \vee(x \in B)) \\
x \in A \cap B \Leftrightarrow((x \in A) \wedge(x \in B)) \\
x \in A \backslash B \Leftrightarrow(x \in A) \wedge(x \notin B)
\end{gathered}
$$

