Math 300 D - Autumn 2014 Midterm Exam Number Two November 12, 2014 Answers

1. Let a and b be integers. Prove that $x = a^2 + ab + b$ is odd iff a is odd or b is odd. Suppose a and b are integers.

We can consider four cases.

(a) Suppose a is even and b is even.

Then a = 2k and b = 2m for some integers k and m.

Then $x = 4k^2 + 4km + 2m = 2(2k^2 + 2km + m)$.

Since $2k^2 + 2km + m$ is an integer (by Axiom 11), x is even.

(b) Suppose a is even and b is odd.

Then a = 2k and b = 2m + 1 for some integers k and m.

Then $x = 4k^2 + 2k(2m+1) + 2m + 1 = 2(2k^2 + k(2m+1) + m) + 1$.

Since $2k^2 + k(2m + 1) + m$ is an integer (by Axiom 11), x is odd.

(c) Suppose a is odd and b is even.

Then a = 2k + 1 and b = 2m for some integers k and m.

Then

$$x = (2k + 1)^{2} + (2k + 1)(2m) + 2m$$
$$= 4k^{2} + 4k + 1 + (2k + 1)(2m) + 2m$$
$$= 2(2k^{2} + 2k + m(2k + 1) + m) + 1.$$

Since $2k^2 + 2k + m(2k + 1) + m$ is an integer (by Axiom 11), x is odd.

(d) Suppose a is odd and b is odd.

Then a = 2k + 1 and b = 2m + ! for some integers k and m.

Then

$$x = (2k+1)^{2} + (2m+1)(2k+1) + b$$

= $4k^{2} + 4k + 1 + 4mk + 2m + 2k + 1 + 2m + 1$
= $2(2k^{2} + 2mk + 3k + 2m + 1) + 1$.

Since $(2k^2 + 2mk + 3k + 2m + 1)$ is an integer (by Axiom 11), x is odd.

The first case shows that if a and b are even, then x is even; hence, if x is odd, then a is odd or b is odd.

The other three cases show that if a or b is odd, then x is odd.

Hence, x is odd if and only if a is odd or b is odd.

2. Let $S = \mathbb{R}_{>0} \times \mathbb{R}_{>0}$. Define a relation $R \subseteq S \times S$ by

$$((x_1, y_1), (x_2, y_2)) \in R \Leftrightarrow x_1 y_1 = x_2 y_2.$$

(a) Prove that R is an equivalence relation.

Suppose $P = (x, y) \in S \times S$.

Since xy = xy, $((x, y), (x, y) \in R$, i.e., $(P, P) \in R$.

Hence, R is reflexive.

Suppose $((x_1, y_1), (x_2, y_2)) \in R$.

Then $x_1y_1 = x_2y_2$.

Hence, $x_2y_2 = x_1y_1$, so $((x_2, y_2), (x_1, y_1)) \in R$.

Thus, R is symmetric.

Suppose $((x_1, y_1), (x_2, y_2)) \in R$ and $((x_2, y_2), (x_3, y_3)) \in R$.

Then $x_1y_1 = x_2y_2$ and $x_2y_2 = x_3y_3$.

Hence, $x_1y_1 = x_3y_3$.

Thus, $((x_1, y_1), (x_3, y_3)) \in R$.

Hence, R is transitive.

Since R is reflexive, symmetric and transitive, R is an equivalence relation.

(b) Notice that elements of S can be viewed as points in the first quadrant of the xy-plane (i.e., the set of points (x,y) where x>0 and y>0.) Draw a picture of one equivalence class in S/R and indicate which equivalence class it is.

Consider $(1,1) \in S$.

We have $((1,1),(x,y)) \in R$ iff 1 = xy, i.e., y = 1/x.

Thus, the portion of the curve y = 1/x in the first quadrant is the equivalence class [(1,1)] in S/R.

(In fact, for any positive j, the curve y=j/x represents an equivalence class in S/R.)

3. Let A and B be sets. Prove that A = B iff $\mathcal{P}(A) = \mathcal{P}(B)$.

Let *A* and *B* be sets.

Suppose A = B. Then $\mathcal{P}(A) = \mathcal{P}(B)$.

Suppose $\mathcal{P}(A) = \mathcal{P}(B)$.

Suppose $x \in A$.

Then $\{x\} \in \mathcal{P}(A)$, so $\{x\} \in \mathcal{P}(B)$.

Hence, $\{x\} \subseteq B$.

Since $x \in \{x\}$, $x \in B$.

Hence, since $x \in A$ implies $x \in B$, $A \subseteq B$.

Now, suppose $y \in B$.

Then $\{y\} \in \mathcal{P}(B)$, so $y \in \mathcal{P}(A)$.

Hence, $\{y\} \subseteq A$.

Since
$$y \in \{y\}$$
, $y \in A$.

Hence, since
$$y \in B$$
 implies $y \in A$, $B \subseteq A$.

Thus,
$$A \subseteq B$$
 and $B \subseteq A$, so $A = B$.

Therefore,
$$A = B$$
 iff $\mathcal{P}(A) = \mathcal{P}(B)$.

4. Prove that $\sqrt{2} + \sqrt{3}$ is an algebraic number.

Let
$$x = \sqrt{2} + \sqrt{3}$$
.

Then
$$(x - \sqrt{2})^2 = 3$$

so
$$x^2 - 2\sqrt{2}x - 1 = 0$$
.

Hence,
$$(-2\sqrt{2}x) = (1-x^2)^2$$
, i.e.

$$8x^2 = 1 - 2x^2 + x^4$$
, i.e.

$$0 = x^4 - 10x^2 + 1.$$

This shows that x is a root of a polynomial with integer coefficients, and so x is an algebraic number.

5. Let \mathcal{F} be a family of sets, and B be a set. Prove that if $\bigcup \mathcal{F} \subseteq B$, then $\mathcal{F} \subseteq \mathcal{P}(B)$.

Let \mathcal{F} be a family of sets, and B be a set.

Suppose
$$\bigcup \mathcal{F} \subseteq B$$
.

Let
$$x \in \mathcal{F}$$
.

Let
$$y \in x$$
.

Then
$$y \in \bigcup \mathcal{F}$$
.

Hence,
$$y \in B$$
.

Since
$$y \in x$$
 implies $y \in B$, $x \subseteq B$.

Hence,
$$x \in \mathcal{P}(B)$$
.

Since
$$x \in \mathcal{F}$$
 implies $x \in \mathcal{P}(B)$, $\mathcal{F} \subseteq \mathcal{P}(B)$.