Math 300 A, B - Spring 2012 Midterm Exam April 27, 2012 Answers

1. (Short answer)

(a) Let A be the set $\{a, b\}$. List every element of the power set of A.

 $\emptyset, \{a\}, \{b\}, \{a, b\}$

(b) Use truth tables to show that $\neg P \lor Q$ and $\neg (P \land \neg Q)$ are equivalent.

P	Q	$\neg P$	$\neg P \lor Q$	$\neg Q$	$P \wedge \neg Q$	$\neg (P \land \neg Q)$
F	F	Т	Т	Т	F	Т
F	Т	Т	Т	F	F	Т
Т	F	F	F	Т	Т	F
Т	Т	F	Т	F	F	Т

(c) Give a useful negation of this statement:"For every integer *n*, there is an integer *m* such that *m*|*n*."One negation is: "There exists an integer *n*, such that, for all integers *m*, *m* does not divide *n*".

2. Prove that, for any sets A and B,

$$\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B).$$

Proof. Suppose $x \in \mathcal{P}(A) \cup \mathcal{P}(B)$. Then $x \in \mathcal{P}(A)$ or $x \in \mathcal{P}(B)$.

Suppose $x \in \mathcal{P}(A)$.

Then $x \subseteq A$.

Suppose $y \in x$. Then $y \in A$, so $y \in A \cup B$. Hence, $x \subseteq A \cup B$.

Therefore, $x \in \mathcal{P}(A \cup B)$.

An identical argument shows that if $x \in \mathcal{P}(B)$, then $x \in \mathcal{P}(A \cup B)$.

Thus, if $x \in \mathcal{P}(A) \cup \mathcal{P}(B)$, then $x \in \mathcal{P}(A \cup B)$.

Therefore, $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.

3. Prove that, for all integers n, $n^2 - 2$ is not divisible by 3. (HINT: Every integer can be written in the form 3k + r, for k and r integers, and r = 0, 1, or 2).

Proof. Let *n* be an integer. Then n = 3k + r for integers *k* and *r* with r = 0, 1 or 2. Suppose r = 0. Then n = 3k, so $n^2 - 2 = 9k^2 - 2$ and

$$\frac{n^2 - 2}{3} = 3k^2 - \frac{2}{3}$$

which is not an integer. So 3 does not divide $n^2 - 2$. Suppose r = 1. Then n = 3k + 1, so $n^2 - 2 = 9k^2 + 6k - 1$ and

$$\frac{n^2 - 2}{3} = 3k^2 + 2k - \frac{1}{3}$$

which is not an integer. So 3 does not divide $n^2 - 2$. Suppose r = 2. Then n = 3k + 2, so $n^2 - 2 = 9k^2 + 12k + 2$ and

$$\frac{n^2 - 2}{3} = 3k^2 + 4k + \frac{2}{3}$$

which is not an integer. So 3 does not divide $n^2 - 2$. Thus, 3 does not divide $n^2 - 2$ for any integer n.

4. Let *n* be an integer. Prove that 20|n iff 4|n and 5|n.

Proof. Let n be an integer.

Suppose 20|n. Then n = 20k for some integer k. Hence n = 4(5k) and n = 5(4k) so 4|n and 5|n.

Suppose 4|n and 5|n. Then n = 4k and n = 5m for integers k and m. Hence,

$$n = 5n - 4n = 20k - 20m = 20(k - m)$$

and, since k - m is an integer, 20|n. Thus, 20|n iff 4|n and 5|n.

5. Prove that for all $x \in \mathbb{R}, x \neq -\frac{1}{2}$, there exists a $y \in \mathbb{R}$ such that $y \neq x$ and $y^2 - x = x^2 - y$.

Proof. Let $x \in \mathbb{R}$ such that $x \neq -\frac{1}{2}$. Let y = -1 - x. Then

$$y^{2} - x = (-1 - x)^{2} - x = 1 + 2x + x^{2} - x = 1 + x + x^{2}$$

and

$$x^{2} - y = x^{2} - (1 - x) = x^{2} + x + 1$$

so $y^2 - x = x^2 - y$. Suppose y = x. Then -1 - x = x and so $x = -\frac{1}{2}$. This is a contradiction to our assumption that $x \neq -\frac{1}{2}$. Hence, $y \neq x$.