Math 300 A, B - Spring 2012
 Midterm Exam
 April 27, 2012
 Answers

1. (Short answer)
(a) Let A be the set $\{a, b\}$. List every element of the power set of A.

$$
\emptyset,\{a\},\{b\},\{a, b\}
$$

(b) Use truth tables to show that $\neg P \vee Q$ and $\neg(P \wedge \neg Q)$ are equivalent.

P	Q	$\neg P$	$\neg P \vee Q$	$\neg Q$	$P \wedge \neg Q$	$\neg(P \wedge \neg Q)$
F	F	T	T	T	F	T
F	T	T	T	F	F	T
T	F	F	F	T	T	F
T	T	F	T	F	F	T

(c) Give a useful negation of this statement:
"For every integer n, there is an integer m such that $m \mid n$."
One negation is: "There exists an integer n, such that, for all integers m, m does not divide $n^{\prime \prime}$.
2. Prove that, for any sets A and B,

$$
\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)
$$

Proof. Suppose $x \in \mathcal{P}(A) \cup \mathcal{P}(B)$. Then $x \in \mathcal{P}(A)$ or $x \in \mathcal{P}(B)$.
Suppose $x \in \mathcal{P}(A)$.
Then $x \subseteq A$.
Suppose $y \in x$. Then $y \in A$, so $y \in A \cup B$. Hence, $x \subseteq A \cup B$.
Therefore, $x \in \mathcal{P}(A \cup B)$.
An identical argument shows that if $x \in \mathcal{P}(B)$, then $x \in \mathcal{P}(A \cup B)$.
Thus, if $x \in \mathcal{P}(A) \cup \mathcal{P}(B)$, then $x \in \mathcal{P}(A \cup B)$.
Therefore, $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.
3. Prove that, for all integers $n, n^{2}-2$ is not divisible by 3. (HINT: Every integer can be written in the form $3 k+r$, for k and r integers, and $r=0,1$, or 2).

Proof. Let n be an integer. Then $n=3 k+r$ for integers k and r with $r=0,1$ or 2 .
Suppose $r=0$. Then $n=3 k$, so $n^{2}-2=9 k^{2}-2$ and

$$
\frac{n^{2}-2}{3}=3 k^{2}-\frac{2}{3}
$$

which is not an integer. So 3 does not divide $n^{2}-2$.
Suppose $r=1$. Then $n=3 k+1$, so $n^{2}-2=9 k^{2}+6 k-1$ and

$$
\frac{n^{2}-2}{3}=3 k^{2}+2 k-\frac{1}{3}
$$

which is not an integer. So 3 does not divide $n^{2}-2$.
Suppose $r=2$. Then $n=3 k+2$, so $n^{2}-2=9 k^{2}+12 k+2$ and

$$
\frac{n^{2}-2}{3}=3 k^{2}+4 k+\frac{2}{3}
$$

which is not an integer. So 3 does not divide $n^{2}-2$.
Thus, 3 does not divide $n^{2}-2$ for any integer n.
4. Let n be an integer. Prove that $20 \mid n$ iff $4 \mid n$ and $5 \mid n$.

Proof. Let n be an integer.
Suppose $20 \mid n$. Then $n=20 k$ for some integer k. Hence $n=4(5 k)$ and $n=5(4 k)$ so $4 \mid n$ and $5 \mid n$.
Suppose $4 \mid n$ and $5 \mid n$. Then $n=4 k$ and $n=5 m$ for integers k and m. Hence,

$$
n=5 n-4 n=20 k-20 m=20(k-m)
$$

and, since $k-m$ is an integer, $20 \mid n$.
Thus, $20 \mid n$ iff $4 \mid n$ and $5 \mid n$.
5. Prove that for all $x \in \mathbb{R}, x \neq-\frac{1}{2}$, there exists a $y \in \mathbb{R}$ such that $y \neq x$ and $y^{2}-x=x^{2}-y$.

Proof. Let $x \in \mathbb{R}$ such that $x \neq-\frac{1}{2}$.
Let $y=-1-x$.
Then

$$
y^{2}-x=(-1-x)^{2}-x=1+2 x+x^{2}-x=1+x+x^{2}
$$

and

$$
x^{2}-y=x^{2}-(1-x)=x^{2}+x+1
$$

so $y^{2}-x=x^{2}-y$.
Suppose $y=x$. Then $-1-x=x$ and so $x=-\frac{1}{2}$.
This is a contradiction to our assumption that $x \neq-\frac{1}{2}$. Hence, $y \neq x$.

