Math 300 B, C - Spring 2013 Midterm Exam April 22, 2013

Name: ______

Student ID no. : _____

Signature: _____

•.

Section: _____

1	15	
2	9	
3	10	
4	5	
5	10	
Total	49	

- Complete all five questions.
- You have 50 minutes to complete the exam.

- 1. For sets A, B, and C, show the following identities using logic symbols and equivalences.
 - (a) $A \setminus (A \cap B) = A \setminus B$

(b) $(A \setminus B) \setminus C = A \setminus (B \cup C)$

(c)
$$(A \setminus B) \cap (B \setminus A) = \emptyset$$

- 2. Write useful contrapositives of each of the following sentences. All variables represent integers.
 - (a) If xy = 3 and x < y, then x = 1 and y = 3.

(b) If x is even or y is odd, then x(y-1) is even.

(c) If there exists a prime p such that p^2 divides x, then x is not squarefree. (Your contrapositive should incorporate a "for all" statement.)

3. Simplify the following expressions. Justify your results by showing a sequence of equivalent expressions connecting the original expression with your final one.

(a) $(P \lor Q) \lor \neg (\neg P \lor \neg R)$

(b) $(P \lor \neg (\neg P \land \neg Q)) \land \neg ((\neg P \land R) \lor (R \land \neg R))$

4. Write a truth table for the statement $\neg P \land (Q \lor P)$

5. Find a formula using only \neg and \land that is equivalent to $(P \rightarrow Q) \rightarrow \neg(Q \lor P)$.

DeMorgan's laws

 $\neg (P \wedge Q)$ is equivalent to $\neg P \vee \neg Q$

 $\neg (P \lor Q)$ is equivalent to $\neg P \land \neg Q$

Commutative Laws

 $P \wedge Q$ is equivalent to $Q \wedge P$

 $P \lor Q$ is equivalent to $Q \lor P$

Associative Laws

 $P \wedge (Q \wedge R)$ is equivalent to $(P \wedge Q) \wedge R$

 $P \lor (Q \lor R)$ is equivalent to $(P \lor Q) \lor R$

Idempotent Laws

 $P \wedge P$ is equivalent to P

 $P \lor P$ is equivalent to P

Distributive Laws

 $P \land (Q \lor R)$ is equivalent to $(P \land Q) \lor (P \land R)$

 $P \lor (Q \land R)$ is equivalent to $(P \lor Q) \land (P \lor R)$

Absorption Laws

 $P \lor (P \land Q)$ is equivalent to P

 $P \wedge (P \vee Q)$ is equivalent to P

Double Negation Law

 $\neg \neg P$ is equivalent to *P*

Tautology Laws

 $P \land$ (a tautology) is equivalent to P $P \lor$ (a tautology) is a tautology \neg (a tautology) is a contradiction Contradiction Laws $P \land$ (a contradiction) is a contradiction $P \lor$ (a contradiction) is equivalent to P \neg (a contradiction) is a tautology Conditional Laws

 $P \rightarrow Q$ is equivalent to $\neg P \lor Q$

 $P \rightarrow Q$ is equivalent to $\neg (P \land \neg Q)$

Contrapositive Laws

 $P \rightarrow Q$ is equivalent to $\neg Q \rightarrow \neg P$

Quantifier Negation Laws

 $\neg \exists x P(x)$ is equivalent to $\forall x \neg P(x)$

 $\neg \forall x P(x)$ is equivalent to $\exists x \neg P(x)$

Sets

 $A = B \Leftrightarrow ((x \in A) \Leftrightarrow (x \in B))$ $x \in A \cup B \Leftrightarrow ((x \in A) \lor (x \in B))$ $x \in A \cap B \Leftrightarrow ((x \in A) \land (x \in B))$ $x \in A \setminus B \Leftrightarrow (x \in A) \land (x \notin B)$