Math 300 B, C - Spring 2013
 Midterm Exam
 April 22, 2013

Name: \qquad Student ID no. : \qquad

Signature: \qquad Section: \qquad

1	15	
2	9	
3	10	
4	5	
5	10	
Total	49	

- Complete all five questions.
- You have 50 minutes to complete the exam.

1. For sets A, B, and C, show the following identities using logic symbols and equivalences.
(a) $A \backslash(A \cap B)=A \backslash B$
(b) $(A \backslash B) \backslash C=A \backslash(B \cup C)$
(c) $(A \backslash B) \cap(B \backslash A)=\varnothing$
2. Write useful contrapositives of each of the following sentences. All variables represent integers.
(a) If $x y=3$ and $x<y$, then $x=1$ and $y=3$.
(b) If x is even or y is odd, then $x(y-1)$ is even.
(c) If there exists a prime p such that p^{2} divides x, then x is not squarefree. (Your contrapositive should incorporate a "for all" statement.)
3. Simplify the following expressions. Justify your results by showing a sequence of equivalent expressions connecting the original expression with your final one.
(a) $(P \vee Q) \vee \neg(\neg P \vee \neg R)$
(b) $(P \vee \neg(\neg P \wedge \neg Q)) \wedge \neg((\neg P \wedge R) \vee(R \wedge \neg R))$
4. Write a truth table for the statement $\neg P \wedge(Q \vee P)$
5. Find a formula using only \neg and \wedge that is equivalent to $(P \rightarrow Q) \rightarrow \neg(Q \vee P)$.

DeMorgan's laws
$\neg(P \wedge Q)$ is equivalent to $\neg P \vee \neg Q$
$\neg(P \vee Q)$ is equivalent to $\neg P \wedge \neg Q$
Commutative Laws
$P \wedge Q$ is equivalent to $Q \wedge P$
$P \vee Q$ is equivalent to $Q \vee P$
Associative Laws
$P \wedge(Q \wedge R)$ is equivalent to $(P \wedge Q) \wedge R$
$P \vee(Q \vee R)$ is equivalent to $(P \vee Q) \vee R$ Idempotent Laws
$P \wedge P$ is equivalent to P
$P \vee P$ is equivalent to P
Distributive Laws
$P \wedge(Q \vee R)$ is equivalent to $(P \wedge Q) \vee(P \wedge R)$
$P \vee(Q \wedge R)$ is equivalent to $(P \vee Q) \wedge(P \vee R)$
Absorption Laws
$P \vee(P \wedge Q)$ is equivalent to P
$P \wedge(P \vee Q)$ is equivalent to P
Double Negation Law
$\neg \neg P$ is equivalent to P
Tautology Laws
$P \wedge$ (a tautology) is equivalent to P
$P \vee($ a tautology $)$ is a tautology
$\neg($ a tautology $)$ is a contradiction
Contradiction Laws
$P \wedge$ (a contradiction) is a contradiction
$P \vee$ (a contradiction) is equivalent to P
\neg (a contradiction) is a tautology

Conditional Laws

$P \rightarrow Q$ is equivalent to $\neg P \vee Q$
$P \rightarrow Q$ is equivalent to $\neg(P \wedge \neg Q)$
Contrapositive Laws
$P \rightarrow Q$ is equivalent to $\neg Q \rightarrow \neg P$
Quantifier Negation Laws
$\neg \exists x P(x)$ is equivalent to $\forall x \neg P(x)$
$\neg \forall x P(x)$ is equivalent to $\exists x \neg P(x)$
Sets

$$
\begin{gathered}
A=B \Leftrightarrow((x \in A) \Leftrightarrow(x \in B)) \\
x \in A \cup B \Leftrightarrow((x \in A) \vee(x \in B)) \\
x \in A \cap B \Leftrightarrow((x \in A) \wedge(x \in B)) \\
x \in A \backslash B \Leftrightarrow(x \in A) \wedge(x \notin B)
\end{gathered}
$$

