Math 300 B, C - Spring 2013
 Midterm Exam
 April 22, 2013
 Answers

1. For sets A, B, and C, show the following identities using logic symbols and equivalences.
(a) $A \backslash(A \cap B)=A \backslash B$

We have

$$
\begin{aligned}
& x \in(A \backslash(A \cap B)) \\
\Leftrightarrow & x \in A \wedge x \notin(A \cap B) \\
\Leftrightarrow & x \in A \wedge \neg(x \in(A \cap B)) \\
\Leftrightarrow & x \in A \wedge \neg(x \in A \wedge x \in B) \\
\Leftrightarrow & x \in A \wedge(x \notin A \vee x \notin B) \\
\Leftrightarrow & (x \in A \wedge x \notin A) \vee(x \in A \vee x \notin B) \\
\Leftrightarrow & x \in A \wedge x \notin B \\
\Leftrightarrow & x \in A \backslash B
\end{aligned}
$$

(definition of set difference)
(definition of negation)
(definition of set intersection)
(DeMorgan's law)
(distribution law)
(contradiction)
(definition of set difference)

Hence, $A \backslash(A \cap B)=A \backslash B$.
(b) $(A \backslash B) \backslash C=A \backslash(B \cup C)$

We have

$$
\begin{array}{rlrl}
& x \in(A \backslash B) \backslash C & & \\
\Leftrightarrow & (x \in A \wedge x \notin B) \wedge(x \notin C) & & \text { (definition of set difference) } \\
\Leftrightarrow & (x \in A) \wedge(x \notin B \wedge x \notin C) & & \text { (associative law) } \\
\Leftrightarrow(x \in A) \wedge \neg(x \in B \vee x \in C) & & \text { (DeMorgan's law) } \\
\Leftrightarrow(x \in A) \wedge x \notin(B \cup C) & & \text { (definition of set union) } \\
\Leftrightarrow & x \in A \backslash(B \cup C) & & \text { (definition of set difference). }
\end{array}
$$

Hence, $(A \backslash B) \backslash C=A \backslash(B \cup C)$.
(c) $(A \backslash B) \cap(B \backslash A)=\varnothing$

We have

$$
\begin{array}{rlrl}
& x \in((A \backslash B) \cap(B \backslash A)) & \\
\Leftrightarrow & x \in(A \backslash B) \wedge x \in(B \backslash A) & & \text { (definition of set intersection) } \\
\Leftrightarrow & x \in A \wedge x \notin B \wedge x \in B \wedge x \notin A & & \text { (definition of set difference) } \\
\Leftrightarrow & (x \in A \wedge x \notin A) \wedge(x \in B \wedge x \notin B) & & \text { (associativity and commutativity) }
\end{array}
$$

Since $(x \in A \wedge x \notin A)$ and $(x \in B \wedge x \notin B)$ are contradictions, $x \in((A \backslash B) \cap(B \backslash A))$ is a contradictions. Hence, $x \in((A \backslash B) \cap(B \backslash A))$ is equivalent to all other contradictions; in particular, we have

$$
x \in((A \backslash B) \cap(B \backslash A)) \Leftrightarrow x \in \varnothing
$$

Hence $(A \backslash B) \cap(B \backslash A)=\varnothing$.
2. Write useful contrapositives of each of the following sentences. All variables represent integers.
(a) If $x y=3$ and $x<y$, then $x=1$ and $y=3$.

The contrapositive is: "If $x \neq 1$ or $y \neq 3$, then $x y \neq 3$ or $x \geq y$."
(b) If x is even or y is odd, then $x(y-1)$ is even.

The contrapositive is: "If $x(y-1)$ is odd, then x is odd and y is even."
(c) If there exists a prime p such that p^{2} divides x, then x is not squarefree. (Your contrapositive should incorporate a "for all" statement.)
The contrapositive is: "If x is squarefree, then for all primes, p, p^{2} does not divide x."
3. Simplify the following expressions. Justify your results by showing a sequence of equivalent expressions connecting the original expression with your final one.
(a) $(P \vee Q) \vee \neg(\neg P \vee \neg R)$

We have:

$$
\begin{array}{rlr}
& (P \vee Q) \vee \neg(\neg P \vee \neg R) & \\
\Leftrightarrow & (P \vee Q) \vee(P \wedge R) & \text { (DeMorgan's law) } \\
\Leftrightarrow & (P \vee Q \vee P) \wedge(P \vee Q \vee R) & \text { (distributive law) } \\
\Leftrightarrow & (Q \vee P) \wedge(P \vee Q \vee R) & \text { (idempotent law) } \\
\Leftrightarrow & (Q \vee P) & \text { (absorption law) }
\end{array}
$$

(b) $(P \vee \neg(\neg P \wedge \neg Q)) \wedge \neg((\neg P \wedge R) \vee(R \wedge \neg R))$

We have:

$$
\begin{array}{rlr}
& (P \vee \neg(\neg P \wedge \neg Q)) \wedge \neg((\neg P \wedge R) \vee(R \wedge \neg R)) & \\
\Leftrightarrow & (P \vee P \vee Q) \wedge(\neg((\neg P \wedge R) \vee(R \wedge \neg R)) & \text { (DeMorgan's law) } \\
\Leftrightarrow & (P \vee Q) \wedge((P \vee \neg R) \wedge(\neg R \vee R)) & \text { (DeMorgan's law) } \\
\Leftrightarrow & (P \vee Q) \wedge(P \vee \neg R) & \text { (tautology) } \\
\Leftrightarrow & P \vee(Q \wedge \neg R) & \text { (distributive law) }
\end{array}
$$

4. Write a truth table for the statement $\neg P \wedge(Q \vee P)$

The following is a truth table for the statement $\neg P \wedge(Q \vee P)$.

P	Q	$\neg P$	$Q \vee P$	$\neg P \wedge(Q \vee P)$
F	F	T	F	F
F	T	T	T	T
T	F	F	T	F
T	T	F	T	F

5. Find a formula using only \neg and \wedge that is equivalent to $(P \rightarrow Q) \rightarrow \neg(Q \vee P)$. One way is like this:

$$
\begin{aligned}
& (P \rightarrow Q) \rightarrow \neg(Q \vee P) \\
\Leftrightarrow & (P \rightarrow Q) \rightarrow(\neg Q \wedge \neg P) \\
\Leftrightarrow & (\neg P \vee Q) \rightarrow(\neg Q \wedge \neg P) \\
\Leftrightarrow & \neg(P \wedge \neg Q) \rightarrow(\neg Q \wedge \neg P) \\
\Leftrightarrow & (P \wedge \neg Q) \vee(\neg Q \wedge \neg P) \\
\Leftrightarrow & \neg(\neg(P \wedge \neg Q) \wedge \neg(\neg Q \wedge \neg P))
\end{aligned}
$$

(DeMorgan's law)
(conditional law)
(DeMorgan's law)
(conditional law)
(DeMorgan's law)

