Math 300 C - Spring 2015 Midterm Exam Number One April 22, 2015

Name: _____

Student ID no. : _____

Signature: _____

1	10	
2	10	
3	10	
4	5	
5	10	
Total	45	

- Complete all 5 questions.
- You have 50 minutes to complete the exam.

1. Let *A*, *B*, and *C* be sets. Suppose $A \cup C \subseteq B \cup C$. Prove that $A \setminus C \subseteq B$.

2. Let *A*, *B* and *C* be sets. Prove that, if $A \subseteq B \cup C$, then $A = (A \cap B) \cup (A \cap C)$.

3. Let a, b, and c be positive integers. Prove that, if a|bc and a|(b + c), then $a|b^2$.

4. Let $S = \{1, 2, 3\}$. Write out the set $\mathcal{P}(S)$ by listing its elements.

5. Suppose *A* and *B* are sets. Suppose $\mathcal{P}(A \setminus B) = \mathcal{P}(A)$. Prove that $A \cap B = \emptyset$.

Axioms of the Integers (AIs) Suppose <i>a</i> , <i>b</i> , and <i>c</i> are integers.	Elementary Properties of the Integers (EPIs) Suppose <i>a</i> , <i>b</i> , <i>c</i> , and <i>d</i> are integers.	
• Closure:	1. $a \cdot 0 = 0$	
a + b and ab are integers.	2. If $a + c = b + c$, then $a = b$.	
• Substitution of Equals:	3. $-a = (-1) \cdot a$	
If $a = b$, then $a + c = b + c$ and $ac = bc$.	4. $(-a) \cdot b = -(a \cdot b)$ 5. $(-a) \cdot (-b) = a \cdot b$	
• Commutativity: a + b = b + a and $ab = ba$.		
Associativity:	6. If $a \cdot b = 0$, then $a = 0$ or $b = 0$.	
(a+b) + c = a + (b+c) and $(ab)c = a(bc)$.	7. If $a \leq b$ and $b \leq a$, then $a = b$.	
	8. If $a < b$ and $b < c$, then $a < c$.	
• The Distributive Law:	9. If $a < b$, then $a + c < b + c$.	
a(b+c) = ab + ac	10. If $a < b$ and $0 < c$, then $ac < bc$. 11. If $a < b$ and $c < 0$, then $bc < ac$. 12. If $a < b$ and $c < d$, then $a + c < b + d$.	
• Identities:		
$a + 0 = 0 + a = a$ and $a \cdot 1 = 1 \cdot a = a$		
0 is called the <i>additive identity</i> 1 is called the <i>multiplicative identity</i> .	13. If $0 \le a < b$ and $0 \le c < d$, then $ac < bd$.	
 Additive Inverses: 	14. If $a < b$, then $-b < -a$.	
There exists an integer $-a$ such that $a + (-a) = (-a) + a = 0$.	14. If $a < 0$, then $b < -a$. 15. $0 \le a^2$	
• Trichotomy:	16. If $ab = 1$, then either $a = b = 1$ or $a = b = -1$.	
Exactly one of the following is true: $a < 0, -a < 0$, or $a = 0$.	NOTE: Properties 8-14 hold if each $<$ is replaced with \leq .	
Sets	One theorem for reference:	
$A \subseteq B$ iff $x \in A$ implies $x \in B$	Theorem DAS (Divisors are Smaller): Let a and b be positive integers. Then $a b$ implies $a \le b$.	
$A = B \text{ iff } A \subseteq B \text{ and } B \subseteq A$		
$x \in A \cup B$ iff $x \in A$ or $x \in B$		
$x \in A \cap B$ iff $x \in A$ and $x \in B$		
$x \in A \setminus B$ iff $x \in A$ and $x \notin B$		

 $\mathcal{P}(A)$ is the set of all subsets of a set A