Math 300 C - Spring 2015 Midterm Exam Number One April 22, 2015 Solutions

1. Let A, B, and C be sets. Suppose $A \cup C \subseteq B \cup C$. Prove that $A \setminus C \subseteq B$. Let *A*, *B*, and *C* be sets. Suppose $A \cup C \subseteq B \cup C$. Suppose $x \in A \setminus C$. Then $x \in A$ and $x \notin C$. Hence, $x \in A \cup C$. Since $A \cup C \subseteq B \cup C$, $x \in B \cup C$. Hence, $x \in B$ or $x \in C$. Since $x \notin C$, $x \in B$. Thus, $x \in A \setminus C$ implies $x \in B$. Therefore, $A \setminus C \subseteq B$. **2**. Let A, B and C be sets. Prove that, if $A \subseteq B \cup C$, then $A = (A \cap B) \cup (A \cap C)$. Let *A*, *B* and *C* be sets. Suppose $A \subseteq B \cup C$. Suppose $x \in A$. Then $x \in B$ or $x \in C$. Suppose $x \in B$. Then $x \in A$ and $x \in B$, so $x \in A \cap B$. Hence, $x \in (A \cap B) \cup (A \cap C)$. Suppose $x \in C$. Then $x \in A$ and $x \in C$, so $x \in A \cap C$. Hence, $x \in (A \cap B) \cup (A \cap C)$. Thus, $x \in (A \cap B) \cup (A \cap C)$. Hence, $x \in A$ implies $x \in (A \cap B) \cup (A \cap C)$, and so $A \subseteq (A \cap B) \cup (A \cap c)$. Now, suppose $x \in (A \cap B) \cup (A \cap C)$. Then $x \in A \cap B$ or $A \in A \cap C$. Suppose $x \in A \cap B$. Then $x \in A$.

Suppose $x \in A \cap C$.

Then $x \in A$.

Thus $x \in A$, so $x \in (A \cap B) \cup (A \cap C)$ implies $x \in A$. Therefore, $(A \cap B) \cup (A \cap C) \subseteq A$.

Thus, $A = (A \cap B) \cup (A \cap C)$.

3. Let a, b, and c be positive integers. Prove that, if a|bc and a|(b+c), then $a|b^2$.

Let a, b, and c be positive integers.

Suppose a|bc and a|(b+c).

Then there exists an integer k such that bc = ak.

Also, there exists an integer m such that b + c = am.

Solving for *b*, we have b = am - c (Additive Inverse Axiom).

Multiplying both sides by b, we obtain $b^2 = (am - c)b = abm - bc$ (Substitution of Equals, Distributive Law, Commutativity).

Hence, $b^2 = abm - ak = a(bm - k)$ (Substitution of Equals, Distributive Law).

Since $bm - k \in \mathbb{Z}$ (since \mathbb{Z} is closed under addition and multiplication), we conclude that $a|b^2$.

4. Let $S = \{1, 2, 3\}$. Write out the set $\mathcal{P}(S)$ by listing its elements.

 $\mathcal{P}(S) = \mathcal{P}(\{1, 2, 3\}) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$

5. Suppose A and B are sets. Suppose $\mathcal{P}(A \setminus B) = \mathcal{P}(A)$. Prove that $A \cap B = \emptyset$. We prove the contrapositive.

Suppose *A* and *B* are sets.

Suppose $A \cap B \neq \emptyset$.

Then there exists an $x \in A \cap B$.

So, $x \in A$ and $x \in B$.

Hence, $\{x\} \subseteq A$, so $\{x\} \in \mathcal{P}(A)$.

Suppose $\{x\} \in \mathcal{P}(A \setminus B)$.

Then $\{x\} \subseteq A \setminus B$.

Then $x \in A \setminus B$; that is, $x \in A$ and $x \notin B$.

This is a contradiction, since $x \in B$.

Thus, $\{x\} \notin \mathcal{P}(A \setminus B)$.

Since $\{x\} \in \mathcal{P}(A)$, we conclude that $\mathcal{P}(A) \neq \mathcal{P}(A \setminus B)$.