Math 300 C - Spring 2015 Midterm Exam Number One April 22, 2015
 Solutions

1. Let A, B, and C be sets. Suppose $A \cup C \subseteq B \cup C$. Prove that $A \backslash C \subseteq B$.

Let A, B, and C be sets.
Suppose $A \cup C \subseteq B \cup C$.
Suppose $x \in A \backslash C$.
Then $x \in A$ and $x \notin C$.
Hence, $x \in A \cup C$.
Since $A \cup C \subseteq B \cup C, x \in B \cup C$.
Hence, $x \in B$ or $x \in C$.
Since $x \notin C, x \in B$.
Thus, $x \in A \backslash C$ implies $x \in B$.
Therefore, $A \backslash C \subseteq B$.
2. Let A, B and C be sets. Prove that, if $A \subseteq B \cup C$, then $A=(A \cap B) \cup(A \cap C)$.

Let A, B and C be sets.
Suppose $A \subseteq B \cup C$.
Suppose $x \in A$.
Then $x \in B$ or $x \in C$.
Suppose $x \in B$.
Then $x \in A$ and $x \in B$, so $x \in A \cap B$.
Hence, $x \in(A \cap B) \cup(A \cap C)$.
Suppose $x \in C$.
Then $x \in A$ and $x \in C$, so $x \in A \cap C$.
Hence, $x \in(A \cap B) \cup(A \cap C)$.
Thus, $x \in(A \cap B) \cup(A \cap C)$.
Hence, $x \in A$ implies $x \in(A \cap B) \cup(A \cap C)$, and so $A \subseteq(A \cap B) \cup(A \cap c)$.
Now, suppose $x \in(A \cap B) \cup(A \cap C)$.
Then $x \in A \cap B$ or $A \in A \cap C$.
Suppose $x \in A \cap B$.
Then $x \in A$.

Suppose $x \in A \cap C$.
Then $x \in A$.
Thus $x \in A$, so $x \in(A \cap B) \cup(A \cap C)$ implies $x \in A$.
Therefore, $(A \cap B) \cup(A \cap C) \subseteq A$.

Thus, $A=(A \cap B) \cup(A \cap C)$.
3. Let a, b, and c be positive integers. Prove that, if $a \mid b c$ and $a \mid(b+c)$, then $a \mid b^{2}$.

Let a, b, and c be positive integers.
Suppose $a \mid b c$ and $a \mid(b+c)$.
Then there exists an integer k such that $b c=a k$.
Also, there exists an integer m such that $b+c=a m$.
Solving for b, we have $b=a m-c$ (Additive Inverse Axiom).
Multiplying both sides by b, we obtain $b^{2}=(a m-c) b=a b m-b c$ (Substitution of Equals, Distributive Law, Commutativity).
Hence, $b^{2}=a b m-a k=a(b m-k)$ (Substitution of Equals, Distributive Law).
Since $b m-k \in \mathbb{Z}$ (since \mathbb{Z} is closed under addition and multiplication), we conclude that $a \mid b^{2}$.
4. Let $S=\{1,2,3\}$. Write out the set $\mathcal{P}(S)$ by listing its elements.

$$
\mathcal{P}(S)=\mathcal{P}(\{1,2,3\})=\{\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}
$$

5. Suppose A and B are sets. Suppose $\mathcal{P}(A \backslash B)=\mathcal{P}(A)$. Prove that $A \cap B=\varnothing$.

We prove the contrapositive.
Suppose A and B are sets.
Suppose $A \cap B \neq \varnothing$.
Then there exists an $x \in A \cap B$.
So, $x \in A$ and $x \in B$.
Hence, $\{x\} \subseteq A$, so $\{x\} \in \mathcal{P}(A)$.
Suppose $\{x\} \in \mathcal{P}(A \backslash B)$.
Then $\{x\} \subseteq A \backslash B$.
Then $x \in A \backslash B$; that is, $x \in A$ and $x \notin B$.
This is a contradiction, since $x \in B$.
Thus, $\{x\} \notin \mathcal{P}(A \backslash B)$.
Since $\{x\} \in \mathcal{P}(A)$, we conclude that $\mathcal{P}(A) \neq \mathcal{P}(A \backslash B)$.

