Math 300 C - Spring 2016 Midterm Exam Number One April 20, 2016 Answers

1. Theorem: Suppose x and a are integers and $a>0$.

For any integer y, define $|y|$ by

$$
|y|= \begin{cases}y & \text { if } y \geq 0 \\ -y & \text { if } y<0\end{cases}
$$

Then $|a x|=a|x|$.
Proof: Suppose x and a are integers and $a>0$.
By the Trichotomy Law, $x>0, x<0$ or $x>0$.
Suppose $x>0$.
Then $|x|=x$, and $a|x|=a x$ by Substitution of Equals.
Also, $a x>0$ by EPI 10 and 1, so $|a x|=a x$.
Hence, by Symmetry and Transitivity of Equals, $|a x|=a|x|$.
Suppose $x=0$.
Then $|x|=|0|=0$ and $a|x|=0$ by EPI 1 .
Also, $a x=0$ by EPI 1 and so $|a x|=0$.
Hence, by Symmetry and Transitivity of Equals, $|a x|=a|x|$.
Suppoe $x<0$.
Then $|x|=-x$ and $a|x|=a(-x)$ by Subsitution of Equals.
Also, $a x<a \cdot 0$ by EPI 10 , so $a x<0$ by EPI 1 .
So, $|a x|=-(a x)$.
By EPI $3,-(a x)=(-1) a x$.
Also, $a(-x)=a(-1) x=(-1) a x$ by Commutativity and EPI 3 .
Thus, by Symmetry and Transitivity of Equals, $|a x|=a|x|$.
Therefore, in all cases, $|a x|=a|x|$. \quad.
2. Theorem: Let A, B and C be sets.

Suppose $A \cup C \subseteq B \cup C$.
Then $A \backslash C \subseteq B$.
Proof: Let A, B and C be sets.
Suppose $A \cup C \subseteq B \cup C$.
Suppose $x \in A \backslash C$.
Then $x \in A$ and $x \notin C$.
Then $x \in A \cup C$, and so $x \in B \cup C$.
So $x \in B$ or $x \in C$.
Since $x \notin C, x \in B$.
Thus, $x \in A \backslash C$ implies $x \in B$,
$A \backslash C \subseteq B$.
3. Theorem: Let A, B and C be sets.

Suppose $A \subseteq B \cup C$ and $B \subseteq A \cup C$.
Then $A \cup B \cup C=C \cup(A \cap B)$.

Proof:

Let A, B and C be sets.
Suppose $A \subseteq B \cup C$ and $B \subseteq A \cup C$.
Suppose $x \in A \cup B \cup C$.
Then $x \in A$ or $x \in B$ or $x \in C$.
Suppose $x \in C$.
Then $x \in C \cup(A \cap B)$.
Suppose $x \in A$.
Then $x \in B \cup C$ (since $A \subseteq B \cup C$).
So $x \in B$ or $x \in C$.
Suppose $x \in C$.
Then $x \in C \cup(A \cap B)$.
Suppose $x \in B$.
Then $x \in A \cap B$, so $x \in C \cup(A \cap B)$.
Suppose $x \in B$.
Then $x \in A \cup C$ (since $B \subseteq A \cup C$).
So $x \in A$ or $x \in C$.
Suppose $x \in C$.
Then $x \in C \cup(A \cap B)$.
Suppose $x \in A$.
Then $x \in A \cap B$, so $x \in C \cup(A \cap B)$.
Hence, $x \in A \cup B \cup C$ implies $x \in C \cup(A \cap B)$, so $A \cup B \cup C \subseteq C \cup(A \cap B)$.
Suppose $x \in C \cup(A \cap B)$.
Then $x \in C$ or $x \in A \cap B$.
Suppose $x \in C$.
Then $x \in A \cup B \cup C$.
Suppose $x \in A \cap B$.
Then $x \in A$, so $x \in A \cup B \cup C$.
Hence, $x \in C \cup(A \cap B)$ implies $x \in A \cup B \cup C$, so $C \cup(A \cap B) \subseteq A \cup B \cup C$.
Thus, $A \cup B \cup C=C \cup(A \cap B)$.
4. Theorem: Let a and b be integers. Then $a^{2}=b^{2}$ if and only if $a=b$ or $a=-b$.

Proof: Let a and b be integers.
Then $(a-b)(a+b)=(a-b) a+(a-b) b$ by the Distributive axiom.
Also, $(a-b) a+(a-b) b=a^{2}-b a+a b+(-b) b$ by the Distributive axiom.
Then, by Commutativity and EPI $3, a^{2}-b a+a b+(-b)(b)=a^{2}-b a+b a-b^{2}$.
By the Additive Inverses axiom, $a^{2}-b a+b a-b^{2}=a^{2}-b^{2}$, and so by Transitivity of Equals, $(a-b)(a+b)=a^{2}-b^{2}$.
Suppose $a^{2}=b^{2}$.
Then $a^{2}-b^{2}=0$ (by the Additive Inverses axiom), and so $(a-b)(a+b)=0$ by Transitivity of Equals.
By EPI $6, a-b=0$ or $a+b=0$.
Hence, $a=b$ or $a=-b$ by the Additive Inverses axiom and Substitution of Equals.
So $a^{2}=b^{2}$ implies $a=b$ or $a=-b$.
Suppose $a=b$.
Then $a^{2}=b a$ by Substitution of Equals.
Also, $a b=b^{2}$ by Substitution of Equals.
Hence, $a^{2}=b^{2}$ by Commutativity and Transitivity of Equals.
Suppose $a=-b$.
Then $a^{2}=-b a$ by Substitution of Equals.
Also, $a(-b)=(-b)^{2}$ by Substitution of equals.
We have $(-b)^{2}=(-b)(-b)=b^{2}$ by EPI 5 .
Also, $a(-b)=a(-1) b=(-1) a b=(-1) b a=-a b$ by Commutativity and EPI 3 .
Hence, by Transitivity of Equals, $a^{2}=b^{2}$.
Thus, $a^{2}=b^{2}$ iff $a=b$ or $a=-b$.

