Math 300 C - Spring 2016 Midterm Exam Number Two May 18, 2016 Solutions

1. Let $A = \mathbb{R} \times \mathbb{R} \setminus \{(0,0)\}.$

Thus, A is the xy-plane without the origin.

Define a relation R on A by

 $((x_1, y_1), (x_2, y_2)) \in R \Leftrightarrow (x_1, y_1)$ and (x_2, y_2) lie on a line which passes through the origin.

Prove that R *is transitive.*

Suppose $P = (x_1, y_1) \in A$ and $Q = (x_2, y_2) \in A$ and $S = (x_3, y_3) \in A$ and $(P, Q) \in R$ and $(Q, S) \in R$.

Suppose $x_1 = 0$.

Then *P* lies on the vertical line x = 0 through the origin and no other line through the origin.

Hence, Q lies on x = 0, and hence S lies on x = 0.

Thus, *P* and *S* lie on a line through the origin, and so $(P, S) \in R$.

Suppose $x_1 \neq 0$.

Then *P* and *Q* lie on a line y = mx where $m \in \mathbb{R}$, and *Q* and *R* lie on a line y = nx where $n \in \mathbb{R}$.

Then $y_2 = mx_2 = nx_2$ so $(m - n)x_2 = 0$.

If $x_2 = 0$, then $y_2 = mx_2 = 0$, so $Q = (0, 0) \notin A$, a contradiction since $Q \in A$.

Hence $x_2 \neq 0$, so m - n = 0, i.e., m = n.

Thus, *P* and *Q* lie on the line y = mx and *Q* and *S* lie on the line y = mx, so *P* and *S* both lie on a line through the origin.

Hence, $(P, S) \in R$ and thus R is transitive.

2. Let A, B, and C be sets.

Let $f : A \to C$ and $g : B \to C$. Prove that $f \cup g : A \cup B \to C$ iff f(x) = g(x) for all $x \in A \cap B$. Suppose $f \cup g : A \cup B \to C$. Suppose $\exists a \in A \cap B$ such that $f(x) \neq g(x)$. Then, since $a \in A$, $(a, f(a)) \in f$ and, since $a \in B$, $(a, g(a)) \in g$. Hence, $(a, f(a)) \in f \cup g$ and $(a, g(a)) \in f \cup g$. But $f(a) \neq g(a)$ and hence $\not\exists ! y \in C$ such that $(a, y) \in f \cup g$, so $f \cup g$ is not a function. This is a contradiction to our assumption that $f \cup g : A \cup B \to C$. Hence, f(x) = g(x), and so $f(x) = g(x) \forall x \in A \cap B$.

Suppose f(x) = g(x) for all $x \in A \cap B$. Suppose $x \in A \cup B$. So $x \in A$ or $x \in B$. Suppose $x \in A$.

Then $(x, f(x)) \in f$, and so $(x, f(x) \in f \cup g$.

Suppose $x \in B$.

Then $(x, g(x)) \in g$ and so $(x, g(x) \in f \cup g$. Thus, $\exists y \in C$ such that $(x, c) \in f \cup g$.

Suppose $(a, y_1) \in f \cup g$ and $(a, y_2) \in f \cup g$. Suppose $(a, y_1) \in f$ and $(a, y_2) \in f$. Then $f(a) = y_1$ and $f(a) = y_2$, so $y_1 = y_2$. Suppose $(a, y_1) \in g$ and $(a, y_2) \in g$. Then $g(a) = y_1$ and $g(a) = y_2$, so $y_1 = y_2$. Suppose $(a, y_1) \in f$ and $(a, y_2) \in g$. Then $a \in A \cap B$, so $f(a) = y_1$, $g(a) = y_2$, and f(a) = g(a), so $y_1 = y_2$.

Suppose $(a, y_1) \in g$ and $(a, y_2) \in f$. Then $a \in A \cap B$, so $f(a) = y_2$, $g(a) = y_1$, and f(a) = g(a), so $y_1 = y_2$.

Hence, $y_1 = y_2$, and so, for each $a \in A \cup B$, there is a unique $y \in C$ such that $(a, y) \in f \cup g$. Thus, $f \cup g : A \to C$. 3. Prove that $18 \mid 49^n + 6n - 1$ for all integers, $n \ge 1$.

For integers $n \ge 1$, let P(n) be the statement " $18 \mid 49^n + 6n - 1$ ".

Base case:

Let n = 1.

Then $49^n + 6n - 1 = 49 + 6 - 1 = 54 = (3)(18)$, so $18 \mid 49^n + 6n - 1$, and so P(1) is true. Induction step:

Suppose P(n) is true for some $n = k \ge 1$.

So P(k) is true.

Then $18 \mid 49^k + 6k - 1$, so $49^k + 6k - 1 = 18m$ for some integer *m*. Then:

$$49^{k+1} + 6(k+1) - 1 = 49(49^k + 6k - 1) - 49(6k) - 49 + 6(k+1) - 1$$

= 49(49^k + 6k - 1) - 48(6k) + 54
= 49(18m) - 18(16k) + (3)(18)
= 18(49m - 16k + 3).

Since *m* and *k* are integers, 49m - 16k + 3 is an integer, and so $18 \mid 49^{k+1} + 6(k+1) - 1$. Thus P(k+1) is true, and so P(k) implies P(k+1).

Hence, since P(1) is true, by induction P(n) is true for all integers $n \ge 1$.

4. Let \mathcal{F} and \mathcal{G} be families (i.e., sets of sets).

(a) Prove that

 $\cup \mathcal{F} \setminus \cup \mathcal{G} \subseteq \cup (\mathcal{F} \setminus \mathcal{G}).$

Suppose $x \in \cup \mathcal{F} \setminus \cup \mathcal{G}$. Then $x \in \cup \mathcal{F}$ and $x \notin \cup \mathcal{G}$. Hence $\exists A \in \mathcal{F}$ such that $x \in A$. Since $x \notin \cup \mathcal{G}, A \notin \mathcal{G}$. Hence, $A \in \mathcal{F} \setminus \mathcal{G}$, so $x \in \cup (\mathcal{F} \setminus \mathcal{G})$. Thus, $x \in \cup \mathcal{F} \setminus \cup \mathcal{G}$ implies $x \in \cup (\mathcal{F} \setminus \mathcal{G})$, and so $\cup \mathcal{F} \setminus \cup \mathcal{G} \subseteq x \in \cup (\mathcal{F} \setminus \mathcal{G})$.

(b) Give an example of non-empty families \mathcal{F} and \mathcal{G} such that

 $\cup \mathcal{F} \setminus \cup \mathcal{G} \neq \cup (\mathcal{F} \setminus \mathcal{G}).$

Prove that your example is valid. Let $\mathcal{F} = \{\{1, 2\}, \{2\}\}$ and $\mathcal{G} = \{\{2\}\}$. Then

 $\cup \mathcal{F} \setminus \cup \mathcal{G} = \{1, 2\} \setminus \{2\} = \{1\}$

and

$$\cup(\mathcal{F}\setminus\mathcal{G})=\cup\{\{1,2\}\}=\{1,2\}.$$

Since $\{1\} \neq \{1,2\}, \cup \mathcal{F} \setminus \cup \mathcal{G} \neq \cup (\mathcal{F} \setminus \mathcal{G} \blacksquare$