Math 300 C - Spring 2016 Midterm Exam Number Two May 18, 2016 Solutions

1. Let $A=\mathbb{R} \times \mathbb{R} \backslash\{(0,0)\}$.

Thus, A is the xy-plane without the origin.
Define a relation R on A by
$\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \in R \Leftrightarrow\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ lie on a line which passes through the origin.
Prove that R is transitive.
Suppose $P=\left(x_{1}, y_{1}\right) \in A$ and $Q=\left(x_{2}, y_{2}\right) \in A$ and $S=\left(x_{3}, y_{3}\right) \in A$ and $(P, Q) \in R$ and $(Q, S) \in R$.
Suppose $x_{1}=0$.
Then P lies on the vertical line $x=0$ through the origin and no other line through the origin.
Hence, Q lies on $x=0$, and hence S lies on $x=0$.
Thus, P and S lie on a line through the origin, and so $(P, S) \in R$.
Suppose $x_{1} \neq 0$.
Then P and Q lie on a line $y=m x$ where $m \in \mathbb{R}$, and Q and R lie on a line $y=n x$ where $n \in \mathbb{R}$.
Then $y_{2}=m x_{2}=n x_{2}$ so $(m-n) x_{2}=0$.
If $x_{2}=0$, then $y_{2}=m x_{2}=0$, so $Q=(0,0) \notin A$, a contradiction since $Q \in A$.
Hence $x_{2} \neq 0$, so $m-n=0$, i.e., $m=n$.
Thus, P and Q lie on the line $y=m x$ and Q and S lie on the line $y=m x$, so P and S both lie on a line through the origin.
Hence, $(P, S) \in R$ and thus R is transitive.
2. Let A, B, and C be sets.

Let $f: A \rightarrow C$ and $g: B \rightarrow C$.
Prove that $f \cup g: A \cup B \rightarrow C$ iff $f(x)=g(x)$ for all $x \in A \cap B$.
Suppose $f \cup g: A \cup B \rightarrow C$.
Suppose $\exists a \in A \cap B$ such that $f(x) \neq g(x)$.
Then, since $a \in A,(a, f(a)) \in f$ and, since $a \in B,(a, g(a)) \in g$.
Hence, $(a, f(a)) \in f \cup g$ and $(a, g(a)) \in f \cup g$.
But $f(a) \neq g(a)$ and hence $\nexists!y \in C$ such that $(a, y) \in f \cup g$, so $f \cup g$ is not a function.
This is a contradiction to our assumption that $f \cup g: A \cup B \rightarrow C$.
Hence, $f(x)=g(x)$, and so $f(x)=g(x) \forall x \in A \cap B$.
Suppose $f(x)=g(x)$ for all $x \in A \cap B$.
Suppose $x \in A \cup B$. So $x \in A$ or $x \in B$.
Suppose $x \in A$.
Then $(x, f(x)) \in f$, and so $(x, f(x) \in f \cup g$.
Suppose $x \in B$.
Then $(x, g(x)) \in g$ and so $(x, g(x) \in f \cup g$.
Thus, $\exists y \in C$ such that $(x, c) \in f \cup g$.
Suppose $\left(a, y_{1}\right) \in f \cup g$ and $\left(a, y_{2}\right) \in f \cup g$.
Suppose $\left(a, y_{1}\right) \in f$ and $\left(a, y_{2}\right) \in f$. Then $f(a)=y_{1}$ and $f(a)=y_{2}$, so $y_{1}=y_{2}$.
Suppose $\left(a, y_{1}\right) \in g$ and $\left(a, y_{2}\right) \in g$. Then $g(a)=y 1$ and $g(a)=y_{2}$, so $y_{1}=y_{2}$.
Suppose $\left(a, y_{1}\right) \in f$ and $\left(a, y_{2}\right) \in g$. Then $a \in A \cap B$, so $f(a)=y_{1}, g(a)=y_{2}$, and $f(a)=g(a)$, so $y_{1}=y_{2}$.

Suppose $\left(a, y_{1}\right) \in g$ and $\left(a, y_{2}\right) \in f$. Then $a \in A \cap B$, so $f(a)=y_{2}, g(a)=y_{1}$, and $f(a)=g(a)$, so $y_{1}=y_{2}$.
Hence, $y_{1}=y_{2}$, and so, for each $a \in A \cup B$, there is a unique $y \in C$ such that $(a, y) \in f \cup g$.
Thus, $f \cup g: A \rightarrow C$.
3. Prove that $18 \mid 49^{n}+6 n-1$ for all integers, $n \geq 1$.

For integers $n \geq 1$, let $P(n)$ be the statement " $18 \mid 49^{n}+6 n-1$ ".
Base case:
Let $n=1$.
Then $49^{n}+6 n-1=49+6-1=54=(3)(18)$, so $18 \mid 49^{n}+6 n-1$, and so $P(1)$ is true.
Induction step:
Suppose $P(n)$ is true for some $n=k \geq 1$.
So $P(k)$ is true.
Then $18 \mid 49^{k}+6 k-1$, so $49^{k}+6 k-1=18 m$ for some integer m.
Then:

$$
\begin{aligned}
49^{k+1}+6(k+1)-1 & =49\left(49^{k}+6 k-1\right)-49(6 k)-49+6(k+1)-1 \\
& =49\left(49^{k}+6 k-1\right)-48(6 k)+54 \\
& =49(18 m)-18(16 k)+(3)(18) \\
& =18(49 m-16 k+3)
\end{aligned}
$$

Since m and k are integers, $49 m-16 k+3$ is an integer, and so $18 \mid 49^{k+1}+6(k+1)-1$.
Thus $P(k+1)$ is true, and so $P(k)$ implies $P(k+1)$.
Hence, since $P(1)$ is true, by induction $P(n)$ is true for all integers $n \geq 1$.
4. Let \mathcal{F} and \mathcal{G} be families (i.e., sets of sets).
(a) Prove that

$$
\cup \mathcal{F} \backslash \cup \mathcal{G} \subseteq \cup(\mathcal{F} \backslash \mathcal{G})
$$

Suppose $x \in \cup \mathcal{F} \backslash \cup \mathcal{G}$.
Then $x \in \cup \mathcal{F}$ and $x \notin \cup \mathcal{G}$.
Hence $\exists A \in \mathcal{F}$ such that $x \in A$.
Since $x \notin \cup \mathcal{G}, A \notin \mathcal{G}$.
Hence, $A \in \mathcal{F} \backslash \mathcal{G}$, so $x \in \cup(\mathcal{F} \backslash \mathcal{G})$.
Thus, $x \in \cup \mathcal{F} \backslash \cup \mathcal{G}$ implies $x \in \cup(\mathcal{F} \backslash \mathcal{G})$, and so $\cup \mathcal{F} \backslash \cup \mathcal{G} \subseteq x \in \cup(\mathcal{F} \backslash \mathcal{G})$.
(b) Give an example of non-empty families \mathcal{F} and \mathcal{G} such that

$$
\cup \mathcal{F} \backslash \cup \mathcal{G} \neq \cup(\mathcal{F} \backslash \mathcal{G})
$$

Prove that your example is valid.
Let $\mathcal{F}=\{\{1,2\},\{2\}\}$ and $\mathcal{G}=\{\{2\}\}$.
Then

$$
\cup \mathcal{F} \backslash \cup \mathcal{G}=\{1,2\} \backslash\{2\}=\{1\}
$$

and

$$
\cup(\mathcal{F} \backslash \mathcal{G})=\cup\{\{1,2\}\}=\{1,2\}
$$

Since $\{1\} \neq\{1,2\}, \cup \mathcal{F} \backslash \cup \mathcal{G} \neq \cup(\mathcal{F} \backslash \mathcal{G} ■$

