Math 300 C - Spring 2022 Midterm Exam Number Two May 18, 2022

Name: ______

Student ID no. : _____

Signature: _____

- You have 50 minutes to complete the exam.
- When time is called, you must stop writing immediately.

1. Prove the following theorem.

Theorem: Let *A*, *B*, and *C* be sets. Suppose $A \cup C \subseteq B \cup C$. Then $A \setminus C \subseteq B$.

2. Prove the following theorem.

Theorem: Suppose \mathcal{A}, \mathcal{B} , and \mathcal{C} are families of sets, with $\mathcal{A} \neq \emptyset, \mathcal{B} \neq \emptyset$, and $\mathcal{C} \neq \emptyset$. Suppose that for every $S \in \mathcal{A}$ and $T \in \mathcal{B}, S \cup T \in \mathcal{C}$. Then $\bigcap \mathcal{C} \subseteq (\bigcap \mathcal{A}) \cup (\bigcap \mathcal{B})$. 3. Use induction to prove the following theorem.

Theorem: For all integers $n \ge 1$,

$$\sum_{j=1}^{n} \frac{1}{(2j-1)(2j+1)} = \frac{n}{2n+1}.$$

4. Define the relation $R \subseteq \mathbb{Z} \times \mathbb{Z}$ by

 $(x,y) \in R$ if and only if $3 \mid (x-y)$.

Is *R* reflexive?

Is *R* symmetric?

Is *R* transitive?

Is R an equivalence relation?

(Note you have **four** questions to answer here.)

Elementary Properties of the Integers (EPIs)

Suppose a , b , c , and d are integers.	10. $a \cdot 0 = 0$
1. Closure: $a + b$ and ab are integers.	11. If $a + c = b + c$
2. Substitution of Equals: If $a = b$, then $a + b$	12. $-a = (-1) \cdot a$
c = b + c and $ac = bc$.	13. $(-a) \cdot b = -(a)$
3. Commutativity: $a + b = b + a$ and $ab = ba$.	14. $(-a) \cdot (-b) =$
4. Associativity: $(a + b) + c = a + (b + c)$ and $(ab)c = a(bc)$.	15. If $ab = 0$, then
5. The Distributive Law: $a(b+c) = ab + ac$	16. If $a \leq b$ and b
6. Identities: $a + 0 = 0 + a = a$ and $a \cdot 1 =$	17. If $a < b$ and b
$1 \cdot a = a.$	18. If $a < b$, then a

0 is called the additive identity.

1 is called the multiplicative identity.

- 7. Additive Inverses: There exists an integer -a such that a + (-a) = (-a) + a = 0.
- 8. **Trichotomy:** Exactly one of the following is true: a > 0, -a > 0, or a = 0.
- 9. The Well-Ordering Principle: Every non-empty set of positive integers contains a smallest element.

Sets

$$A \subseteq B \text{ iff } x \in A \text{ implies } x \in B$$
$$A = B \text{ iff } A \subseteq B \text{ and } B \subseteq A$$
$$x \in A \cup B \text{ iff } x \in A \text{ or } x \in B$$
$$x \in A \cap B \text{ iff } x \in A \text{ and } x \in B$$

 $x \in A \setminus B$ iff $x \in A$ and $x \notin B$

- c, then a = b.
- ab)
- ab
- n a = 0 or b = 0.
- < a, then a = b.
- < c, then a < c.
- a + c < b + c.
- 19. If a < b and 0 < c, then ac < bc.
- 20. If a < b and c < 0, then bc < ac.
- 21. If a < b and c < d, then a + c < b + d.
- 22. If $0 \leq a < b$ and $0 \leq c < d$, then ac < bd.

23. If
$$a < b$$
, then $-b < -a$.

24.
$$0 \le a^2$$
, where $a^2 = a \cdot a$.

25. If ab = 1, then either a = b = 1 or a = b = -1.

NOTE: Properties 17-23 hold if each < is replaced with \leq .

One theorem for reference:

Theorem DAS (Divisors are Smaller):

Let *a* and *b* be positive integers. Then a|bimplies $a \leq b$.