# Math 300 C - Spring 2022 Midterm Exam Number Two May 18, 2022 

Name: $\qquad$ Student ID no. : $\qquad$

Signature: $\qquad$

- You have 50 minutes to complete the exam.
- When time is called, you must stop writing immediately.

1. Prove the following theorem.

Theorem: Let $A, B$, and $C$ be sets. Suppose $A \cup C \subseteq B \cup C$. Then $A \backslash C \subseteq B$.
2. Prove the following theorem.

Theorem: Suppose $\mathcal{A}, \mathcal{B}$, and $\mathcal{C}$ are families of sets, with $\mathcal{A} \neq \varnothing, \mathcal{B} \neq \varnothing$, and $\mathcal{C} \neq \varnothing$. Suppose that for every $S \in \mathcal{A}$ and $T \in \mathcal{B}, S \cup T \in \mathcal{C}$.
Then $\cap \mathcal{C} \subseteq(\bigcap \mathcal{A}) \cup(\bigcap \mathcal{B})$.
3. Use induction to prove the following theorem.

Theorem: For all integers $n \geq 1$,

$$
\sum_{j=1}^{n} \frac{1}{(2 j-1)(2 j+1)}=\frac{n}{2 n+1} .
$$

4. Define the relation $R \subseteq \mathbb{Z} \times \mathbb{Z}$ by

$$
(x, y) \in R \text { if and only if } 3 \mid(x-y) .
$$

Is $R$ reflexive?
Is $R$ symmetric?
Is $R$ transitive?
Is $R$ an equivalence relation?
(Note you have four questions to answer here.)

## Elementary Properties of the Integers (EPIs)

Suppose $a, b, c$, and $d$ are integers.

1. Closure: $a+b$ and $a b$ are integers.
2. Substitution of Equals: If $a=b$, then $a+$ $c=b+c$ and $a c=b c$.
3. Commutativity: $a+b=b+a$ and $a b=b a$.
4. Associativity: $(a+b)+c=a+(b+c)$ and $(a b) c=a(b c)$.
5. The Distributive Law: $a(b+c)=a b+a c$
6. Identities: $a+0=0+a=a$ and $a \cdot 1=$ $1 \cdot a=a$.

0 is called the additive identity.
1 is called the multiplicative identity.
7. Additive Inverses: There exists an integer $-a$ such that $a+(-a)=(-a)+a=0$.
8. Trichotomy: Exactly one of the following is true:
$a>0,-a>0$, or $a=0$.
9. The Well-Ordering Principle: Every non-empty set of positive integers contains a smallest element.

## Sets

$A \subseteq B$ iff $x \in A$ implies $x \in B$
$A=B$ iff $A \subseteq B$ and $B \subseteq A$
$x \in A \cup B$ iff $x \in A$ or $x \in B$
$x \in A \cap B$ iff $x \in A$ and $x \in B$
$x \in A \backslash B$ iff $x \in A$ and $x \notin B$
10. $a \cdot 0=0$
11. If $a+c=b+c$, then $a=b$.
12. $-a=(-1) \cdot a$
13. $(-a) \cdot b=-(a b)$
14. $(-a) \cdot(-b)=a b$
15. If $a b=0$, then $a=0$ or $b=0$.
16. If $a \leq b$ and $b \leq a$, then $a=b$.
17. If $a<b$ and $b<c$, then $a<c$.
18. If $a<b$, then $a+c<b+c$.
19. If $a<b$ and $0<c$, then $a c<b c$.
20. If $a<b$ and $c<0$, then $b c<a c$.
21. If $a<b$ and $c<d$, then $a+c<b+d$.
22. If $0 \leq a<b$ and $0 \leq c<d$, then $a c<b d$.
23. If $a<b$, then $-b<-a$.
24. $0 \leq a^{2}$, where $a^{2}=a \cdot a$.
25. If $a b=1$, then either $a=b=1$ or $a=b=-1$.

NOTE: Properties 17-23 hold if each < is replaced with $\leq$.

One theorem for reference:
Theorem DAS (Divisors are Smaller):
Let $a$ and $b$ be positive integers. Then $a \mid b$ implies $a \leq b$.

