Math 300 A - Winter 2013
 Midterm Exam
 January 30, 2013
 Answers

1. Let A be the statement $(P \vee(Q \wedge P)) \wedge(Q \vee P)$.
(a) Write out the truth table for A.

P	Q	$Q \wedge P$	$P \vee(Q \wedge P)$	$Q \vee P$	$(P \vee(Q \wedge P)) \wedge(Q \vee P)$
F	F	F	F	F	F
F	T	F	F	T	F
T	F	F	T	T	T
T	T	T	T	T	T

(b) Write a simpler expression which is equivalent to A .

We can see from the table that $(P \vee(Q \wedge P)) \wedge(Q \vee P)$ is equivalent to P.
2. (a) Show that, for sets A, B and C,

$$
(A \backslash B) \cap C=(A \cap C) \backslash B
$$

using logical symbols and equivalences.

$$
\begin{aligned}
& x \in(A \backslash B) \cap C \\
\Leftrightarrow & x \in A \wedge x \notin B \wedge x \in C \\
\Leftrightarrow & (x \in A \wedge x \in C) \wedge x \notin B \\
\Leftrightarrow & (x \in A \cap C) \wedge x \notin B \\
\Leftrightarrow & x \in(A \cap C) \backslash B .
\end{aligned}
$$

Hence, $(A \backslash B) \cap C=(A \cap C) \backslash B$.
(b) Show that, for sets A, B and C,

$$
(B \cup C) \backslash(A \backslash B)=B \cup(C \backslash A)
$$

using logical symbols and equivalences.

$$
\begin{aligned}
& x \in(B \cup C) \backslash(A \backslash B) \\
\Leftrightarrow & (x \in B \vee x \in C) \wedge x \notin(A \backslash B) \\
\Leftrightarrow & (x \in B \vee x \in C) \wedge \neg(x \in A \wedge x \notin B) \\
\Leftrightarrow & (x \in B \vee x \in C) \wedge(x \notin A \vee x \in B) \\
\Leftrightarrow & (x \in B) \vee(x \in C \wedge x \notin A) \\
\Leftrightarrow & x \in B \cup(C \backslash A) .
\end{aligned}
$$

Hence, $(B \cup C) \backslash(A \backslash B)=B \cup(C \backslash A)$.
3. Write a useful negation of each of the following statements using idiomatic mathematical English.
(a) For every real number x, there exists a real number y which is greater.

There exists a real number x such that, for every real number $y, y \leq x$.
(b) Every integer greater than 1 is either prime or composite.

There exists an integer greater than 1 which is not prime and not composite.
(c) There exists a unique integer n which is divisible by 5 and 7 .

Either there exists no integer which is divisible by 5 and 7 or there exists more than one integer which is divisible by 5 and 7.
(d) Some functions are differentiable.

All functions are not differentiable.
4. Find a formula involving only the connectives \neg and \rightarrow that is equivalent to

$$
(P \vee Q) \wedge \neg(P \wedge Q)
$$

There are many correct answers. One is

$$
\neg((\neg P \rightarrow Q) \rightarrow \neg(P \rightarrow \neg Q))
$$

which can be arrived at like this:

$$
\begin{aligned}
& (P \vee Q) \wedge \neg(P \wedge Q) \\
& \Leftrightarrow(P \vee Q) \wedge(\neg P \vee \neg Q) \\
& \Leftrightarrow \neg(\neg(P \vee Q) \vee \neg(\neg P \vee \neg Q)) \\
& \Leftrightarrow \neg((P \vee Q) \rightarrow \neg(\neg P \vee \neg Q)) \\
& \Leftrightarrow \neg((\neg P \rightarrow Q) \rightarrow \neg(P \rightarrow \neg Q))
\end{aligned}
$$

5. Simplify the expression below as much as you can.

$$
\neg(\neg P \wedge Q) \vee(P \wedge \neg R)
$$

This expression can be simplified to $P \vee \neg Q$, or, equivalently, $Q \rightarrow P$.

