Math 300 D - Winter 2014 Midterm Exam January 29, 2014

Name: ______

Student ID no. : _____

Signature: _____

1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
Total	60	

- Complete all six questions.
- You have 50 minutes to complete the exam.

- 1. Let *A*,*B*,and *C* be sets. Verify the following identities by showing that that the statement $x \in$ "the left hand set" is equivalent to the statement $x \in$ "the right hand set". Give a justification for each step (e.g., definition of union, DeMorgan's law, distributive law, etc.)
 - (a) $A \cap (B \cup (A \cap B)) = A \cap B$

(b) $(A \cap B) \setminus (B \cap C) = (A \cap B) \setminus C$

2. Let A,B,C and D be sets. Verify the following identity by showing that that the statement $x \in$ "the left hand set" is equivalent to the statement $x \in$ "the right hand set". Give a justification for each step (e.g., definition of union, DeMorgan's law, distributive law, etc.)

 $((A \cup B) \setminus (B \setminus A)) \setminus A = \emptyset$

3. Simplify the following expressions as much as possible. You should show a sequence of equivalent expressions connecting the original expression with your final one, and give a justification for each step (e.g., DeMorgan's law, distributive law, etc.)

(a) $P \lor (\neg P \land (P \lor Q))$

(b) $(\neg P \land (Q \lor P)) \lor (P \lor \neg Q)$

4. Simplify the following expressions as much as possible. You should show a sequence of equivalent expressions connecting the original expression with your final one, and give a justification for each step (e.g., DeMorgan's law, distributive law, etc.)

(a) $P \leftrightarrow (Q \rightarrow (P \lor R))$

(b) $(P \land \neg Q) \to (P \to Q)$

5. Express the following using only the connectives \neg and \wedge :

 $(P \leftrightarrow Q) \vee R$

6. For a set A, let $\mathcal{P}(A)$ be the power set of A. Write out the set given by the expression $\mathcal{P}(\{1,2,3\}) \cap \mathcal{P}(\{2,3,4\}).$ DeMorgan's laws

 $\neg (P \wedge Q)$ is equivalent to $\neg P \vee \neg Q$

 $\neg (P \lor Q)$ is equivalent to $\neg P \land \neg Q$

Commutative Laws

 $P \wedge Q$ is equivalent to $Q \wedge P$

 $P \lor Q$ is equivalent to $Q \lor P$

Associative Laws

 $P \wedge (Q \wedge R)$ is equivalent to $(P \wedge Q) \wedge R$

 $P \lor (Q \lor R)$ is equivalent to $(P \lor Q) \lor R$

Idempotent Laws

 $P \wedge P$ is equivalent to P

 $P \lor P$ is equivalent to P

Distributive Laws

 $P \land (Q \lor R)$ is equivalent to $(P \land Q) \lor (P \land R)$

 $P \lor (Q \land R)$ is equivalent to $(P \lor Q) \land (P \lor R)$

Absorption Laws

 $P \lor (P \land Q)$ is equivalent to P

 $P \wedge (P \vee Q)$ is equivalent to P

Double Negation Law

 $\neg \neg P$ is equivalent to *P*

Tautology Laws

 $P \land$ (a tautology) is equivalent to P $P \lor$ (a tautology) is a tautology \neg (a tautology) is a contradiction Contradiction Laws $P \land$ (a contradiction) is a contradiction $P \lor$ (a contradiction) is equivalent to P \neg (a contradiction) is a tautology Conditional Laws

 $P \rightarrow Q$ is equivalent to $\neg P \lor Q$

 $P \rightarrow Q$ is equivalent to $\neg (P \land \neg Q)$

Contrapositive Laws

 $P \rightarrow Q$ is equivalent to $\neg Q \rightarrow \neg P$

Quantifier Negation Laws

 $\neg \exists x P(x)$ is equivalent to $\forall x \neg P(x)$

 $\neg \forall x P(x)$ is equivalent to $\exists x \neg P(x)$

Sets

 $A = B \Leftrightarrow ((x \in A) \Leftrightarrow (x \in B))$ $x \in A \cup B \Leftrightarrow ((x \in A) \lor (x \in B))$ $x \in A \cap B \Leftrightarrow ((x \in A) \land (x \in B))$ $x \in A \setminus B \Leftrightarrow (x \in A) \land (x \notin B)$