Math 300 D - Winter 2014
 Midterm Exam
 January 29, 2014

Name: \qquad Student ID no. : \qquad

Signature: \qquad

1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
Total	60	

- Complete all six questions.
- You have 50 minutes to complete the exam.

1. Let A, B, and C be sets. Verify the following identities by showing that that the statement $x \in$ "the left hand set" is equivalent to the statement $x \in$ "the right hand set". Give a justification for each step (e.g., definition of union, DeMorgan's law, distributive law, etc.)
(a) $A \cap(B \cup(A \cap B))=A \cap B$
(b) $(A \cap B) \backslash(B \cap C)=(A \cap B) \backslash C$
2. Let A, B, C and D be sets. Verify the following identity by showing that that the statement $x \in$ "the left hand set" is equivalent to the statement $x \in$ "the right hand set". Give a justification for each step (e.g., definition of union, DeMorgan's law, distributive law, etc.)

$$
((A \cup B) \backslash(B \backslash A)) \backslash A=\varnothing
$$

3. Simplify the following expressions as much as possible. You should show a sequence of equivalent expressions connecting the original expression with your final one, and give a justification for each step (e.g., DeMorgan's law, distributive law, etc.)
(a) $P \vee(\neg P \wedge(P \vee Q))$
(b) $(\neg P \wedge(Q \vee P)) \vee(P \vee \neg Q)$
4. Simplify the following expressions as much as possible. You should show a sequence of equivalent expressions connecting the original expression with your final one, and give a justification for each step (e.g., DeMorgan's law, distributive law, etc.)
(a) $P \leftrightarrow(Q \rightarrow(P \vee R))$
(b) $(P \wedge \neg Q) \rightarrow(P \rightarrow Q)$
5. Express the following using only the connectives \neg and \wedge :

$$
(P \leftrightarrow Q) \vee R
$$

6. For a set A, let $\mathcal{P}(A)$ be the power set of A. Write out the set given by the expression $\mathcal{P}(\{1,2,3\}) \cap \mathcal{P}(\{2,3,4\})$.

DeMorgan's laws
$\neg(P \wedge Q)$ is equivalent to $\neg P \vee \neg Q$
$\neg(P \vee Q)$ is equivalent to $\neg P \wedge \neg Q$
Commutative Laws
$P \wedge Q$ is equivalent to $Q \wedge P$
$P \vee Q$ is equivalent to $Q \vee P$
Associative Laws
$P \wedge(Q \wedge R)$ is equivalent to $(P \wedge Q) \wedge R$
$P \vee(Q \vee R)$ is equivalent to $(P \vee Q) \vee R$ Idempotent Laws
$P \wedge P$ is equivalent to P
$P \vee P$ is equivalent to P
Distributive Laws
$P \wedge(Q \vee R)$ is equivalent to $(P \wedge Q) \vee(P \wedge R)$
$P \vee(Q \wedge R)$ is equivalent to $(P \vee Q) \wedge(P \vee R)$
Absorption Laws
$P \vee(P \wedge Q)$ is equivalent to P
$P \wedge(P \vee Q)$ is equivalent to P
Double Negation Law
$\neg \neg P$ is equivalent to P
Tautology Laws
$P \wedge$ (a tautology) is equivalent to P
$P \vee($ a tautology $)$ is a tautology
$\neg($ a tautology $)$ is a contradiction
Contradiction Laws
$P \wedge$ (a contradiction) is a contradiction
$P \vee$ (a contradiction) is equivalent to P
\neg (a contradiction) is a tautology

Conditional Laws

$P \rightarrow Q$ is equivalent to $\neg P \vee Q$
$P \rightarrow Q$ is equivalent to $\neg(P \wedge \neg Q)$
Contrapositive Laws
$P \rightarrow Q$ is equivalent to $\neg Q \rightarrow \neg P$
Quantifier Negation Laws
$\neg \exists x P(x)$ is equivalent to $\forall x \neg P(x)$
$\neg \forall x P(x)$ is equivalent to $\exists x \neg P(x)$
Sets

$$
\begin{gathered}
A=B \Leftrightarrow((x \in A) \Leftrightarrow(x \in B)) \\
x \in A \cup B \Leftrightarrow((x \in A) \vee(x \in B)) \\
x \in A \cap B \Leftrightarrow((x \in A) \wedge(x \in B)) \\
x \in A \backslash B \Leftrightarrow(x \in A) \wedge(x \notin B)
\end{gathered}
$$

