Math 300 D - Winter 2014
 Midterm Exam
 January 29, 2014
 Answers

1. Let A, B, and C be sets. Verify the following identities by showing that that the statement $x \in$ "the left hand set" is equivalent to the statement $x \in$ "the right hand set". Give a justification for each step (e.g., definition of union, DeMorgan's law, distributive law, etc.)
(a) $A \cap(B \cup(A \cap B))=A \cap B$

$$
\begin{align*}
& x \in A \cap(B \cup(A \cap B)) \\
\Leftrightarrow & x \in A \wedge(x \in B \vee x \in A \cap B) \\
\Leftrightarrow & x \in A \wedge(x \in B \vee(x \in A \wedge x \in B)) \\
\Leftrightarrow & x \in A \wedge x \in B \\
\Leftrightarrow & x \in(A \cap B)
\end{align*}
$$

(def. of \cap)
(absorption law)
(def. of \cap)
(b) $(A \cap B) \backslash(B \cap C)=(A \cap B) \backslash C$

$$
\begin{aligned}
& x \in(A \cap B) \backslash(B \cap C) \\
\Leftrightarrow & x \in A \cap B \wedge x \notin B \cap C \\
\Leftrightarrow & x \in A \wedge x \in B \wedge \neg(x \in B \wedge x \in C) \\
\Leftrightarrow & x \in A \wedge x \in B \wedge(x \notin B \vee x \notin C) \\
\Leftrightarrow & x \in A \wedge(x \in B \wedge(x \notin B \vee x \notin C)) \\
\Leftrightarrow & x \in A \wedge((x \in B \wedge x \notin B) \vee(x \in B \wedge x \notin C)) \\
\Leftrightarrow & x \in A \wedge(x \in B \wedge x \notin C) \\
\Leftrightarrow & (x \in A \wedge x \in B) \wedge x \notin C \\
\Leftrightarrow & x \in(A \cap B) \backslash C
\end{aligned}
$$

(def. of \backslash) (def. of \cap, \notin)
(DeMorgan's law)
(associative laws)
(distibution laws)
(tautology laws)
(associative laws)
(def. of \cap, \backslash)
2. Let A, B, C and D be sets. Verify the following identity by showing that that the statement $x \in$ "the left hand set" is equivalent to the statement $x \in$ "the right hand set". Give a justification for each step (e.g., definition of union, DeMorgan's law, distributive law, etc.)

$$
((A \cup B) \backslash(B \backslash A)) \backslash A=\varnothing
$$

$$
\begin{array}{rlr}
& x \in((A \cup B) \backslash(B \backslash A)) \backslash A & \\
\Leftrightarrow & (x \in A \cup B \wedge x \notin B \backslash A) \wedge x \notin A & \text { (def. of } \backslash \text {) } \\
\Leftrightarrow & (x \in A \vee x \in B) \wedge \neg(x \in B \wedge x \notin A) \wedge x \notin A & \text { (def. of } \cap, \backslash) \\
\Leftrightarrow & (x \in A \vee x \in B) \wedge(x \notin B \vee x \in A) \wedge x \notin A & \text { (DeMorgan's law) } \\
\Leftrightarrow & (x \in A \vee(x \in B \wedge x \notin B)) \wedge x \notin A & \text { (distrubtive laws) } \\
\Leftrightarrow & x \in A \wedge x \notin A & \text { (contradiction laws) } \\
\Leftrightarrow & x \in \varnothing &
\end{array}
$$

In the last step, we use the fact that all contradictions are equivalent.
3. Simplify the following expressions as much as possible. You should show a sequence of equivalent expressions connecting the original expression with your final one, and give a justification for each step (e.g., DeMorgan's law, distributive law, etc.)
(a) $P \vee(\neg P \wedge(P \vee Q))$

$$
\begin{align*}
& P \vee(\neg P \wedge(P \vee Q)) \\
\Leftrightarrow & (P \vee \neg P) \wedge(P \vee(P \tag{tautologylaws}\\
\Leftrightarrow & P \vee(P \vee Q) \\
\Leftrightarrow & P \vee Q
\end{align*}
$$

$$
\Leftrightarrow(P \vee \neg P) \wedge(P \vee(P \vee Q)) \quad \text { (distributive laws) }
$$

(idempotent laws)
(b) $(\neg P \wedge(Q \vee P)) \vee(P \vee \neg Q)$

$$
\begin{aligned}
& (\neg P \wedge(Q \vee P)) \vee(P \vee \neg Q) \\
\Leftrightarrow & ((\neg P \wedge Q) \vee(\neg P \wedge P)) \vee(P \vee \neg Q) \\
\Leftrightarrow & (\neg P \wedge Q) \vee(P \vee \neg Q) \\
\Leftrightarrow & ((\neg P \wedge Q) \vee P) \vee \neg Q \\
\Leftrightarrow & ((\neg P \vee P) \wedge(Q \vee P)) \vee \neg Q \\
\Leftrightarrow & (Q \vee P) \vee \neg Q \\
\Leftrightarrow & \text { tautology }
\end{aligned}
$$

(distributive law) (contradiction law)
(associative law)
(distributive law)
(tautology law)
4. Simplify the following expressions as much as possible. You should show a sequence of equivalent expressions connecting the original expression with your final one, and give a justification for each step (e.g., DeMorgan's law, distributive law, etc.)
(a) $P \leftrightarrow(Q \rightarrow(P \vee R))$

$$
\begin{aligned}
& P \leftrightarrow(Q \rightarrow(P \vee R)) \\
\Leftrightarrow & (P \rightarrow(Q \rightarrow(P \vee R))) \wedge((Q \rightarrow(P \vee R)) \rightarrow P) \\
\Leftrightarrow & (\neg P \vee(\neg Q \vee P \vee R)) \wedge((\neg Q \vee(P \vee R)) \vee P) \\
\Leftrightarrow & (Q \wedge \neg(P \vee R)) \vee P) \\
\Leftrightarrow & (Q \wedge \neg R \wedge \neg P) \vee P \\
\Leftrightarrow & (P \vee(Q \wedge \neg R)) \wedge(P \vee \neg P) \\
\Leftrightarrow & P \vee(Q \wedge \neg R)
\end{aligned}
$$

(def. of \leftrightarrow)
(conditional laws)
(tautology and DeMorgan's laws)
(DeMorgan's and commutative laws) (distributive and commutative laws)
(tautology laws)
(b) $(P \wedge \neg Q) \rightarrow(P \rightarrow Q)$

$$
\begin{array}{rlr}
& (P \wedge \neg Q) \rightarrow(P \rightarrow Q) & \\
\Leftrightarrow & \neg(P \wedge \neg Q) \vee(\neg P \vee Q) & \text { (conditional laws) } \\
\Leftrightarrow & \neg P \vee Q \vee \neg P \vee Q & \text { (DeMorgan's laws) } \tag{DeMorgan'slaws}\\
\Leftrightarrow & \neg P \vee Q & \text { (idempotent and commutative laws) }
\end{array}
$$

5. Express the following using only the connectives \neg and \wedge :

$$
(P \leftrightarrow Q) \vee R
$$

$$
\begin{aligned}
& (P \leftrightarrow Q) \vee R \\
\Leftrightarrow & ((P \rightarrow Q) \wedge(Q \rightarrow P)) \vee R \\
\Leftrightarrow & ((\neg P \vee Q) \wedge(\neg Q \vee P)) \vee R \\
\Leftrightarrow & \neg(\neg(\neg(P \wedge \neg Q) \wedge \neg(Q \wedge \neg P)) \wedge \neg R)
\end{aligned}
$$

$$
\Leftrightarrow((P \rightarrow Q) \wedge(Q \rightarrow P)) \vee R \quad \quad \text { (def. of } \leftrightarrow)
$$

(conditional laws)
(DeMorgan's laws)
6. For a set A, let $\mathcal{P}(A)$ be the power set of A. Write out the set given by the expression

$$
\begin{gathered}
\mathcal{P}(\{1,2,3\}) \cap \mathcal{P}(\{2,3,4\}) . \\
\mathcal{P}(\{1,2,3\}) \cap \mathcal{P}(\{2,3,4\})=\{\varnothing,\{2\},\{3\},\{2,3\}\} .
\end{gathered}
$$

