Math 300 B - Winter 2015 Midterm Exam Number Two February 25, 2015

Name: _____

Student ID no. : _____

Signature: _____

	1	10	
	2	10	
	3	10	
	4	10	
	5	10	
]	[otal	50	

- Complete all 5 questions.
- You have 50 minutes to complete the exam.

1. Let *A*, *B* and *C* be sets. Prove that $(A \cup B) \cap C \subseteq A \cup (B \cap C)$.

2. Let *A* and *B* be sets. Prove that $A \cap B = \emptyset$ if and only if $\mathcal{P}(A) \cap \mathcal{P}(B) = \{\emptyset\}$.

3. Prove that, for all integers n, 3 does not divide $n^2 - 5$.

4. Let *A* and *B* be sets. Prove that $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$.

5. Define a relation R on \mathbb{Z} by

$$(x,y) \in R \Leftrightarrow 4 \mid x^2 - y^2.$$

Is R an equivalence relation? Prove your answer.

$$A = B \Leftrightarrow ((x \in A) \Leftrightarrow (x \in B))$$
$$A \subseteq B \Leftrightarrow ((x \in A) \to (x \in B))$$
$$x \in A \cup B \Leftrightarrow ((x \in A) \lor (x \in B))$$
$$x \in A \cap B \Leftrightarrow ((x \in A) \land (x \in B))$$
$$x \in A \setminus B \Leftrightarrow (x \in A) \land (x \notin B)$$
$$A \times ioms$$

Suppose x, y, and z are real numbers. We will take as fact each of the following.

- 1. x + y and xy are real numbers. (\mathbb{R} is *closed* under addition and multiplication.)
- 2. If x = y, then x + z = y + z and xz = yz. (This is sometimes called *substitution of equals*.)
- 3. x + y = y + x and xy = yx (addition and multiplication are *commutative* in \mathbb{R})
- 4. (x + y) + z = x + (y + z) and (xy)z = x(yz)(addition and multiplication are *associative* in \mathbb{R})
- 5. x(y + z) = xy + xz (This is the *Distributive Law*.)
- 6. x + 0 = 0 + x = x and x · 1 = 1 · x = x (0 is the *additive identity*; 1 is the *multiplicative identity*.)
- 7. There exists a real number -x such that x + (-x) = (-x) + x = 0. (That is, every real number has an *additive inverse* in \mathbb{R} .)
- 8. If $x \neq 0$, then there exists a real number x^{-1} such that $x \cdot x^{-1} = x^{-1} \cdot x = 1$. (That is, every non-zero real number has a *multiplicative inverse* in \mathbb{R} .)
- 9. If x > 0 and y > 0, then x + y > 0 and xy > 0.
- 10. Either x > 0, -x > 0, or x = 0.
- 11. If x and y are integers, then -x, x + y, and xy are integers. (The additive inverse of an integer is an integer and \mathbb{Z} is closed under addition and multiplication.)

<u>NOTE</u>: It is not hard to prove that \mathbb{Q} , the set of rational numbers is closed under addition and multiplication and that every non-zero rational number has a multiplicative inverse in \mathbb{Q} .

Elementary Properties of Real Numbers

The following properties of real numbers that allow us to do algebra follow from the axioms on the front page.

If *x*, *y*, *z*, *u*, and *v* are real numbers, then:

- 1. $x \cdot 0 = 0$
- 2. If x + z = y + z, then x = y.
- 3. If $x \cdot z = y \cdot z$ and $z \neq 0$, then x = y.
- 4. $-x = (-1) \cdot x$
- 5. $(-x) \cdot y = -(x \cdot y)$
- 6. $(-x) \cdot (-y) = x \cdot y$
- 7. If $x \cdot y = 0$, then x = 0 or y = 0.
- 8. If $x \leq y$ and $y \leq x$, then x = y.
- 9. If $x \leq y$ and $y \leq z$, then $x \leq z$.
- 10. At least one of the following is true: $x \le y$ or $y \le x$.
- 11. If $x \le y$, then $x + z \le y + z$.
- 12. If $x \le y$ and $0 \le z$, then $xz \le yz$.
- 13. If $x \le y$ and $z \le 0$, then $yz \le xz$.
- 14. If $x \le y$ and $u \le v$, then $x + u \le y + v$.
- 15. If $0 \le x \le y$ and $0 \le u \le v$, then $xu \le yv$.
- 16. If $x \leq y$, then $-y \leq -x$.
- 17. $0 \le x^2$
- 18. 0 < 1
- 19. If 0 < x, then $0 < x^{-1}$.
- 20. If 0 < x < y, then $0 < y^{-1} < x^{-1}$.

And here are a couple of properties of integers.

- 21. Every integer is either even or odd, never both.
- 22. The only integers that divide 1 are -1 and 1.