Math 300 B - Winter 2015
 Midterm Exam Number Two February 25, 2015
 Answers

1. Let A, B and C be sets. Prove that $(A \cup B) \cap C \subseteq A \cup(B \cap C)$.

Let A, B, and C be sets.
Suppose $x \in(A \cup B) \cap C$.
Then $x \in(A \cup B)$ and $x \in C$.
So, $x \in A$ or $x \in B$.
Suppose $x \in A$.
Then $x \in A \cup(B \cap C)$.
Suppose $x \in B$.
Then $x \in B \cap C$, so $x \in A \cup(B \cap C)$.
Therefore $x \in A \cup(B \cap C)$.
Thus, $x \in(A \cup B) \cap C$ implies $x \in A \cup(B \cap C)$.
Hence, $(A \cup B) \cap C \subseteq A \cup(B \cap C)$.
2. Let A and B be sets. Prove that $A \cap B=\varnothing$ if and only if $\mathcal{P}(A) \cap \mathcal{P}(B)=\{\varnothing\}$.

Let A and B be sets.
Suppose $A \cap B \neq \varnothing$.
Then there exists x such that $x \in A$ and $x \in B$.
Let $S=\{x\}$, the set containing x as its only element.
Since $x \in A, S \subseteq A$, so $S \in \mathcal{P}(A)$.
Since $x \in B, S \subseteq B$, so $S \in \mathcal{P}(B)$.
Thus, $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$, and $S \neq \varnothing$, so $\mathcal{P}(A) \cap \mathcal{P}(B) \neq\{\varnothing\}$.
Suppose $\mathcal{P}(A) \cap \mathcal{P}(B) \neq\{\varnothing\}$.
Since $\varnothing \in \mathcal{P}(A) \cap \mathcal{P}(B)$, we can conclude that there is a set $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$ and $S \neq \varnothing$.
Hence, there is an element $x \in S$.
Since $S \in \mathcal{P}(A), S \subseteq A$, and so $x \in A$.
Since $S \in \mathcal{P}(B), S \subseteq B$, and so $x \in B$.
Thus, $x \in A \cup B$, so $A \cup B \neq \varnothing$.
Hence, $A \cap B=\varnothing$ if and only if $\mathcal{P}(A) \cap \mathcal{P}(B)=\{\varnothing\}$.
3. Prove that, for all integers $n, 3$ does not divide $n^{2}-5$.

Let n be an integer.
By Euclid's theorem, $n=3 k+r$ for some integers k and r, and $0 \leq r<3$.
That is, $r=0,1$, or 2 .
Then $n^{2}-5=(3 k+r)^{2}-5=9 k^{2}+6 k r+r^{2}-5=9 k^{2}+6 k r+r^{2}-6+1=3\left(3 k^{2}+2 k r-2\right)+r^{2}+1$.
Let t be the remainder when $n^{2}-5$ is divided by 3 .
Then t is equal to the remainder then $r^{2}+1$ is divided by 3 .
If $r=0$, then $r^{2}+1=1=0 \cdot 3+1$, so $t=1$.
If $r=1$, then $r^{2}+1=2=0 \cdot 3+2$, so $t=2$.
If $r=2$, then $r^{2}+1=5=1 \cdot 3+2$, so $t=2$.
Hence the remainder when $n^{2}-5$ is divided by 3 is 1 or 2 and not zero.
Thus 3 does not divide $n^{2}-5$.
4. Let A and B be sets. Prove that $\mathcal{P}(A \cap B)=\mathcal{P}(A) \cap \mathcal{P}(B)$.

Let A and B be sets.
Suppose $S \in \mathcal{P}(A \cap B)$.
Then $S \subseteq A \cap B$.
Suppose $x \in S$.
Then $x \in A \cap B$, so $x \in A$ and $x \in B$.
Thus $x \in S$ implies $x \in A$, so $S \subseteq A$.
Also, $x \in S$ implies $x \in B$, so $S \subseteq B$.
Thus $S \in \mathcal{P}(A)$ and $S \in \mathcal{P}(B)$, so $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$.
Thus $S \in \mathcal{P}(A \cap B)$ implies $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$, so $\mathcal{P}(A \cap B) \subseteq \mathcal{P}(A) \cap \mathcal{P}(B)$.
Suppose $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$.
Then $S \in \mathcal{P}(A)$ and $S \in \mathcal{P}(B)$.
So $S \subset A$ and $S \subset B$.
Suppose $x \in S$.
Then $x \in A$ and $x \in B$, so $x \in A \cap B$.
Thus, $x \in S$ implies $x \in A \cap B$, so $S \subseteq A \cap B$.
That is, $S \in \mathcal{P}(A \cap B)$.
Thus, $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$ implies $S \in \mathcal{P}(A \cap B)$, so

$$
\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)
$$

Since $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$ and $\mathcal{P}(A \cap B) \subseteq \mathcal{P}(A) \cap \mathcal{P}(B)$,

$$
\mathcal{P}(A \cap B)=\mathcal{P}(A) \cap \mathcal{P}(B)
$$

5. Define a relation R on \mathbb{Z} by

$$
(x, y) \in R \Leftrightarrow 4 \mid x^{2}-y^{2} .
$$

Is R an equivalence relation? Prove your answer.
Let $x \in \mathbb{Z}$.
Then $x^{2}-x^{2}=0=4 \cdot 0$, so $4 \mid x^{2}-x^{2}$.
Hence, $(x, x) \in R$, and so R is reflexive.
Suppose $(x, y) \in R$.
Then $4 \mid x^{2}-y^{2}$.
That is, $x^{2}-y^{2}=4 k$ for some integer k.
Then $y^{2}-x^{2}=-4 k=4(-k)$ and since $-k \in \mathbb{Z}, 4 \mid y^{2}-x^{2}$.
Hence, $(y, x) \in R$, and so R is symmetric.

Suppose $(x, y) \in R$ and $(y, z) \in R$.
Then $4 \mid x^{2}-y^{2}$, so $x^{2}-y^{2}=4 k$ for some integer k.
Also, $4 \mid y^{2}-z^{2}$, so $y^{2}-z^{2}=4 m$ for some integer m.
Hence, $x^{2}-y^{2}+y^{2}-z^{2}=x^{2}-z^{2}=4 k+4 m=4(k+m)$.
Since $k+m$ is an integer, $4 \mid x^{2}-z^{2}$, and so $(x, z) \in R$.
Thus, R is transitive.
Since R is reflexive, symmetric and transitive, R is an equivalence relation.

