Math 300 B - Winter 2015 Midterm Exam Number Two February 25, 2015 Answers

1. Let A, B and C be sets. Prove that $(A \cup B) \cap C \subseteq A \cup (B \cap C)$. Let *A*, *B*, and *C* be sets. Suppose $x \in (A \cup B) \cap C$. Then $x \in (A \cup B)$ and $x \in C$. So, $x \in A$ or $x \in B$. Suppose $x \in A$. Then $x \in A \cup (B \cap C)$. Suppose $x \in B$. Then $x \in B \cap C$, so $x \in A \cup (B \cap C)$. Therefore $x \in A \cup (B \cap C)$. Thus, $x \in (A \cup B) \cap C$ implies $x \in A \cup (B \cap C)$. Hence, $(A \cup B) \cap C \subseteq A \cup (B \cap C)$. 2. Let A and B be sets. Prove that $A \cap B = \emptyset$ if and only if $\mathcal{P}(A) \cap \mathcal{P}(B) = \{\emptyset\}$. Let *A* and *B* be sets. Suppose $A \cap B \neq \emptyset$. Then there exists *x* such that $x \in A$ and $x \in B$. Let $S = \{x\}$, the set containing x as its only element. Since $x \in A$, $S \subseteq A$, so $S \in \mathcal{P}(A)$. Since $x \in B$, $S \subseteq B$, so $S \in \mathcal{P}(B)$. Thus, $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$, and $S \neq \emptyset$, so $\mathcal{P}(A) \cap \mathcal{P}(B) \neq \{\emptyset\}$.

Suppose $\mathcal{P}(A) \cap \mathcal{P}(B) \neq \{\emptyset\}$. Since $\emptyset \in \mathcal{P}(A) \cap \mathcal{P}(B)$, we can conclude that there is a set $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$ and $S \neq \emptyset$. Hence, there is an element $x \in S$. Since $S \in \mathcal{P}(A), S \subseteq A$, and so $x \in A$. Since $S \in \mathcal{P}(B), S \subseteq B$, and so $x \in B$. Thus, $x \in A \cup B$, so $A \cup B \neq \emptyset$. Hence, $A \cap B = \emptyset$ if and only if $\mathcal{P}(A) \cap \mathcal{P}(B) = \{\emptyset\}$. 3. Prove that, for all integers n, 3 does not divide $n^2 - 5$.

Let *n* be an integer. By Euclid's theorem, n = 3k + r for some integers k and r, and $0 \le r < 3$. That is, r = 0, 1, or 2. Then $n^2 - 5 = (3k + r)^2 - 5 = 9k^2 + 6kr + r^2 - 5 = 9k^2 + 6kr + r^2 - 6 + 1 = 3(3k^2 + 2kr - 2) + r^2 + 1$. Let t be the remainder when $n^2 - 5$ is divided by 3. Then *t* is equal to the remainder then $r^2 + 1$ is divided by 3. If r = 0, then $r^2 + 1 = 1 = 0 \cdot 3 + 1$, so t = 1. If r = 1, then $r^2 + 1 = 2 = 0 \cdot 3 + 2$, so t = 2. If r = 2, then $r^2 + 1 = 5 = 1 \cdot 3 + 2$, so t = 2. Hence the remainder when $n^2 - 5$ is divided by 3 is 1 or 2 and not zero. Thus 3 does not divide $n^2 - 5$. 4. Let A and B be sets. Prove that $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$. Let *A* and *B* be sets. Suppose $S \in \mathcal{P}(A \cap B)$. Then $S \subseteq A \cap B$. Suppose $x \in S$. Then $x \in A \cap B$, so $x \in A$ and $x \in B$. Thus $x \in S$ implies $x \in A$, so $S \subseteq A$. Also, $x \in S$ implies $x \in B$, so $S \subseteq B$. Thus $S \in \mathcal{P}(A)$ and $S \in \mathcal{P}(B)$, so $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$. Thus $S \in \mathcal{P}(A \cap B)$ implies $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$, so $\mathcal{P}(A \cap B) \subseteq \mathcal{P}(A) \cap \mathcal{P}(B)$. Suppose $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$. Then $S \in \mathcal{P}(A)$ and $S \in \mathcal{P}(B)$. So $S \subset A$ and $S \subset B$.

Suppose $x \in S$.

Then $x \in A$ and $x \in B$, so $x \in A \cap B$.

Thus, $x \in S$ implies $x \in A \cap B$, so $S \subseteq A \cap B$.

That is, $S \in \mathcal{P}(A \cap B)$.

Thus, $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$ implies $S \in \mathcal{P}(A \cap B)$, so

 $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B).$

Since $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$ and $\mathcal{P}(A \cap B) \subseteq \mathcal{P}(A) \cap \mathcal{P}(B)$,

 $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B).\blacksquare$

$$(x,y) \in R \Leftrightarrow 4 \mid x^2 - y^2$$

Is *R* an equivalence relation? Prove your answer. Let $x \in \mathbb{Z}$. Then $x^2 - x^2 = 0 = 4 \cdot 0$, so $4 \mid x^2 - x^2$. Hence, $(x, x) \in R$, and so *R* is reflexive.

Suppose $(x, y) \in R$. Then $4 \mid x^2 - y^2$. That is, $x^2 - y^2 = 4k$ for some integer k. Then $y^2 - x^2 = -4k = 4(-k)$ and since $-k \in \mathbb{Z}$, $4 \mid y^2 - x^2$. Hence, $(y, x) \in R$, and so R is symmetric.

Suppose $(x, y) \in R$ and $(y, z) \in R$. Then $4 \mid x^2 - y^2$, so $x^2 - y^2 = 4k$ for some integer k. Also, $4 \mid y^2 - z^2$, so $y^2 - z^2 = 4m$ for some integer m. Hence, $x^2 - y^2 + y^2 - z^2 = x^2 - z^2 = 4k + 4m = 4(k + m)$. Since k + m is an integer, $4 \mid x^2 - z^2$, and so $(x, z) \in R$. Thus, R is transitive.

Since *R* is reflexive, symmetric and transitive, *R* is an equivalence relation. \blacksquare