Math 300 E - Winter 2019 Midterm Exam Number One January 30, 2019

Name: \qquad Student ID no. : \qquad

Signature: \qquad

1	6	
2	10	
3	10	
4	10	
5	10	
Total	46	

- You have 50 minutes to complete the exam.

1. Let a and b be integers. Write useful contrapositives of the following statements.
(a) If $a b$ is even, then a is even or b is even.
(b) If $a>0$ and $b>0$, then $a b>0$ and $a+b>0$.
(c) If $a>0$, and $b>0$ or $b<0$, then $a b^{2}>0$.
2. Prove the following theorem.

Theorem: Let a be an integer and let r be an irrational number.
Suppose $a \neq 0$ and $r \neq 0$.
Then $a r$ is irrational.
3. Prove the following theorem.

Theorem: Let a and b be positive integers.
If $a-1$ is divisible by 4 , and $b-1$ is divisible by 4 , then $a b-1$ is divisible by 4 .
4. Prove the following theorem.

Theorem: For all integers m, there exists a unique integer n such that $2 m(m+1)-4 n=0$.
5. Prove the following theorem.

Theorem: Let $a \in \mathbb{Z}$. Then $|a|=0$ iff $a=0$.

Axioms of the Integers (AIs)
Suppose a, b, and c are integers.

- Closure:
$a+b$ and $a b$ are integers.
- Substitution of Equals:

If $a=b$, then $a+c=b+c$ and $a c=b c$.

- Commutativity:
$a+b=b+a$ and $a b=b a$.

- Associativity:

$(a+b)+c=a+(b+c)$ and $(a b) c=$ $a(b c)$.

- The Distributive Law:

$a(b+c)=a b+a c$

- Identities:

$a+0=0+a=a$ and $a \cdot 1=1 \cdot a=a$ 0 is called the additive identity
1 is called the multiplicative identity.

- Additive Inverses:

There exists an integer $-a$ such that $a+(-a)=(-a)+a=0$.

- Trichotomy:

Exactly one of the following is true: $a<0,-a<0$, or $a=0$.

Sets

$A \subseteq B$ iff $x \in A$ implies $x \in B$ $A=B$ iff $A \subseteq B$ and $B \subseteq A$ $x \in A \cup B$ iff $x \in A$ or $x \in B$ $x \in A \cap B$ iff $x \in A$ and $x \in B$ $x \in A \backslash B$ iff $x \in A$ and $x \notin B$ $\mathcal{P}(A)$ is the set of all subsets of a set A

Elementary Properties of the Integers (EPIs)
Suppose a, b, c, and d are integers.

1. $a \cdot 0=0$
2. If $a+c=b+c$, then $a=b$.
3. $-a=(-1) \cdot a$
4. $(-a) \cdot b=-(a \cdot b)$
5. $(-a) \cdot(-b)=a \cdot b$
6. If $a \cdot b=0$, then $a=0$ or $b=0$.
7. If $a \leq b$ and $b \leq a$, then $a=b$.
8. If $a<b$ and $b<c$, then $a<c$.
9. If $a<b$, then $a+c<b+c$.
10. If $a<b$ and $0<c$, then $a c<b c$.
11. If $a<b$ and $c<0$, then $b c<a c$.
12. If $a<b$ and $c<d$, then $a+c<b+d$.
13. If $0 \leq a<b$ and $0 \leq c<d$, then $a c<b d$.
14. If $a<b$, then $-b<-a$.
15. $0 \leq a^{2}$
16. If $a b=1$, then either $a=b=1$ or $a=b=$ -1 .

NOTE: Properties $8-14$ hold if each $<$ is replaced with \leq.
One theorem for reference:
Theorem DAS (Divisors are Smaller): Let a and b be positive integers. Then $a \mid b$ implies $a \leq b$.

