Math 300 E - Winter 2019 Midterm Exam Number Two February 27, 2019

Name: _____

Student ID no. : _____

Signature: _____

1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

• You have 50 minutes to complete the exam.

1. Let *A* and *B* be sets. Prove that $\mathcal{P}(A \setminus B) \subseteq \mathcal{P}(A) \setminus \mathcal{P}(B)$.

2. Let \mathcal{F} and \mathcal{G} be non-empty families (i.e., sets of sets). Prove that $(\bigcap \mathcal{F}) \cap (\bigcap \mathcal{G}) = \bigcap (\mathcal{F} \cup \mathcal{G})$.

3. Let *A*, *B* and *C* be sets. Prove that $A \cup C \subseteq B \cup C$ iff $A \setminus C \subseteq B \setminus C$.

4. Use induction to prove that, for all integers $n \ge 0$,

$$\sum_{i=0}^{n} \frac{1}{3^{i}} = \frac{3}{2} - \frac{1}{2 \cdot 3^{n}}.$$

5. Let $R \subseteq \mathbb{R} \times \mathbb{R}$ be defined by

$$(x, y) \in R$$
 iff $x - y \in \mathbb{Z}$ or $x + y \in \mathbb{Z}$.

Is R an equivalence relation? Support your answer with a proof.

Axioms of the Integers (AIs)Suppose <i>a</i> , <i>b</i> , and <i>c</i> are integers.	Elementary Properties of the Integers (EPIs) Suppose <i>a</i> , <i>b</i> , <i>c</i> , and <i>d</i> are integers.	
• Closure:	1. $a \cdot 0 = 0$	
a + b and ab are integers.	2. If $a + c = b + c$, then $a = b$.	
• Substitution of Equals:	3. $-a = (-1) \cdot a$	
If $a = b$, then $a + c = b + c$ and $ac = bc$.	4. $(-a) \cdot b = -(a \cdot b)$	
Commutativity:	$5 (a) \cdot (b) = a \cdot b$	
a + b = b + a and $ab = ba$.	$5. (-a) \cdot (-b) = a \cdot b$	
• Associativity:	6. If $a \cdot b = 0$, then $a = 0$ or $b = 0$.	
(a+b) + c = a + (b+c) and $(ab)c =$	7. If $a \leq b$ and $b \leq a$, then $a = b$.	
a(bc).	8. If $a < b$ and $b < c$, then $a < c$.	
• The Distributive Law:	9. If $a < b$, then $a + c < b + c$.	
a(b+c) = ab + ac	10. If $a < b$ and $0 < c$, then $ac < bc$.	
• Identities:	11. If $a < b$ and $c < 0$, then $bc < ac$.	
$a + 0 = 0 + a = a$ and $a \cdot 1 = 1 \cdot a = a$	12. If $a < b$ and $a < d$ then $a + a < b + d$	
0 is called the <i>additive identity</i>	12. If $a < b$ and $c < a$, then $a + c < b + a$.	
1 is called the <i>multiplicative identity</i> .	13. If $0 \le a < b$ and $0 \le c < d$, then $ac < bd$.	
Additive Inverses:	14. If $a < b$, then $-b < -a$.	
There exists an integer $-a$ such that $a + (-a) = (-a) + a = 0$.	15. $0 \le a^2$	
• Trichotomy:	16. If $ab = 1$, then either $a = b = 1$ or $a = b = -1$.	
Exactly one of the following is true: $a < 0, -a < 0$, or $a = 0$.	NOTE: Properties 8-14 hold if each $<$ is replaced with \leq	
Sets	One theorem for reference:	
$A \subseteq B$ iff $x \in A$ implies $x \in B$	Theorem DAS (Divisors are Smaller): Let a and b be positive integers. Then $a b$ implies	
$A = B \text{ iff } A \subseteq B \text{ and } B \subseteq A$	$a \le b.$	
$x \in A \cup B$ iff $x \in A$ or $x \in B$		
$x \in A \cap B$ iff $x \in A$ and $x \in B$		
$x \in A \setminus B$ iff $x \in A$ and $x \notin B$		

 $\mathcal{P}(A)$ is the set of all subsets of a set A