Math 300 E - Winter 2019 Midterm Exam Number Two February 27, 2019 Answers

1. Let A and B be sets. Prove that $\mathcal{P}(A \setminus B) \subseteq \mathcal{P}(A) \setminus \mathcal{P}(B)$.

Proof: Let *A* and *B* be sets. Suppose $S \in \mathcal{P}(A \setminus B)$. Then $S \subseteq A \setminus B$. Suppose $x \in S$. Then $x \in A$ and $x \notin B$. So $x \in S$ implies $x \in A$, and hence $S \subseteq A$. Thus, $S \in \mathcal{P}(A)$. Since $x \in S$ does not imply $x \in B$, we conclude that $S \notin B$, so $S \notin \mathcal{P}(B)$. Hence, $S \in \mathcal{P}(A) \setminus \mathcal{P}(B)$. Thus, $S \in \mathcal{P}(A \setminus B)$ implies $S \in \mathcal{P}(A) \setminus \mathcal{P}(B)$, and so $\mathcal{P}(A \setminus B) \subseteq \mathcal{P}(A) \setminus \mathcal{P}(B)$. 2. Let \mathcal{F} and \mathcal{G} be non-empty families (i.e., sets of sets). Prove that $(\bigcap \mathcal{F}) \cap (\bigcap \mathcal{G}) = \bigcap (\mathcal{F} \cup \mathcal{G})$. **Proof:** Let \mathcal{F} and \mathcal{G} be non-empty families.

Suppose $x \in (\bigcap \mathcal{F}) \cap (\bigcap \mathcal{G})$. Then $x \in \bigcap F$ and $x \in \bigcap G$. Suppose $S \in \mathcal{F} \cup \mathcal{G}$ (we are trying to show that x is in $\bigcap (\mathcal{F} \cup \mathcal{G})$.) Then $S \in \mathcal{F}$ or $S \in \mathcal{G}$. If $S \in \mathcal{F}$, then $x \in S$, since $x \in \bigcap \mathcal{F}$. If $S \in \mathcal{G}$, then $x \in S$, since $x \in \bigcap \mathcal{G}$. Hence, $x \in S$. So $S \in \mathcal{F} \cup \mathcal{G}$ implies $x \in S$, and so $x \in \bigcap (\mathcal{F} \cup \mathcal{G})$ Thus, $x \in (\bigcap \mathcal{F}) \cap (\bigcap \mathcal{G})$ implies $x \in \bigcap (\mathcal{F} \cup \mathcal{G})$, and hence $(\bigcap \mathcal{F}) \cap (\bigcap \mathcal{G}) \subseteq \bigcap (\mathcal{F} \cup \mathcal{G})$. Now, suppose $x \in \bigcap (\mathcal{F} \cup \mathcal{G})$. Suppose $S \in F$. Then $S \in F \cup G$, so $x \in S$ since $x \in \bigcap (F \cup G)$. Hence, $S \in F$ implies $x \in S$, and so $x \in \bigcap \mathcal{F}$. Suppose $S \in G$. Then $S \in F \cup G$, so $x \in S$ since $x \in \bigcap (\mathcal{F} \cup \mathcal{G})$. Hence, $S \in G$ implies $x \in S$, and so $x \in \bigcap \mathcal{G}$. So, $x \in (\bigcap \mathcal{F}) \cap (\bigcap \mathcal{G})$. Thus, $x \in \bigcap (\mathcal{F} \cup \mathcal{G})$ implies $x \in (\bigcap \mathcal{F}) \cap (\bigcap \mathcal{G})$, and hence $\bigcap (\mathcal{F} \cup \mathcal{G}) \subseteq (\bigcap \mathcal{F}) \cap (\bigcap \mathcal{G})$. Therefore, $(\bigcap \mathcal{F}) \cap (\bigcap \mathcal{G}) = \bigcap (\mathcal{F} \cup \mathcal{G}).\blacksquare$

```
3. Let A, B and C be sets. Prove that A \cup C \subseteq B \cup C iff A \setminus C \subseteq B \setminus C.
Proof: Let A, B, and C be sets.
Suppose A \cup C \subseteq B \cup C.
      Suppose x \in A \setminus C.
           Then x \in A and x \notin C.
           Then x \in A \cup C, and so x \in B \cup C.
           That is, x \in B or x \in C.
           But, x \notin C, so x \in B.
          Hence, x \in B \setminus C.
      Thus, x \in A \setminus C implies x \in B \setminus C, so A \setminus C \subseteq B \setminus C.
Thus, A \cup C \subseteq B \cup C implies A \setminus C \subseteq B \setminus C.
Now, suppose A \setminus C \subseteq B \setminus C.
      Suppose x \in A \cup C.
           Then x \in A or x \in C.
          If x \in C, then x \in B \cup C.
           Suppose x \notin C.
                Then x \in A, so x \in A \setminus C.
               Hence, x \in B \setminus C, and so x \in B, and thus x \in B \cup C.
      Thus, x \in A \cup C implies x \in B \cup C, so A \cup C \subseteq B \cup C.
Thus, A \setminus C \subseteq B \setminus C implies A \cup C \subseteq B \cup C.
```

Hence, $A \cup C \subseteq B \cup C$ iff $A \setminus C \subseteq B \setminus C$.

4. Use induction to prove that, for all integers $n \ge 0$,

$$\sum_{i=0}^{n} \frac{1}{3^{i}} = \frac{3}{2} - \frac{1}{2 \cdot 3^{n}}.$$

Proof: For all integers $n \ge 0$, let P(n) be the statement " $\sum_{i=0}^{n} \frac{1}{3^i} = \frac{3}{2} - \frac{1}{2 \cdot 3^n}$ ".

We proceed by induction.

Base Case: Let n = 0.

Then

$$\sum_{i=0}^{n} \frac{1}{3^{i}} = \sum_{i=0}^{0} \frac{1}{3^{i}} = \frac{1}{3^{0}} = 1 = \frac{3}{2} - \frac{1}{2} = \frac{3}{2} - \frac{1}{2 \cdot 3^{0}} = \frac{3}{2} - \frac{1}{2 \cdot 3^{n}}$$

So P(0) is true.

Induction Step: Suppose P(k) is true for some $k \in \mathbb{Z}_{\geq 0}$. Then

$$\sum_{i=0}^{k+1} \frac{1}{3^i} = \frac{1}{3^{k+1}} + \sum_{i=0}^k \frac{1}{3^i}$$
$$= \frac{1}{3^{k+1}} + \frac{3}{2} - \frac{1}{2 \cdot 3^k}$$
$$= \frac{3}{2} + \frac{2}{2 \cdot 3^{k+1}} - \frac{3}{2 \cdot 3^{k+1}}$$
$$= \frac{3}{2} - \frac{1}{2 \cdot 3^{k+1}}.$$

Hence, P(k+1) is true.

Thus, P(n) implies P(n + 1), and since P(0) is true, by induction P(n) is true for all integers $n \ge 0$.

5. Let $R \subseteq \mathbb{R} \times \mathbb{R}$ be defined by

 $(x, y) \in R$ iff $x - y \in \mathbb{Z}$ or $x + y \in \mathbb{Z}$.

Is R an equivalence relation? Support your answer with a proof.

Answer: *R* is an equivalence relation.

Proof: Suppose *R* is the relation defined above.

Reflexivity: Suppose $x \in \mathbb{R}$.

Then $x - x = 0 \in \mathbb{Z}$, so $(x, x) \in R$.

Hence, $x \in \mathbb{R}$ implies $(x, x) \in R$, and so *R* is reflexive.

Symmetry: Suppose $(x, y) \in R$. Then $x - y \in \mathbb{Z}$ or $x + y \in \mathbb{Z}$.

If x - y is an integer, then y - x = (-1)(x - y) is an integer.

If x + y is an integer, then y + x = x + y is an integer.

Hence, $y - x \in \mathbb{Z}$ or $y + x \in \mathbb{Z}$, and so $(y, x) \in R$.

Thus, $(x, y) \in R$ implies $(y, x) \in R$, and so *R* is symmetric.

Transitivity: Suppose $(x, y) \in R$ and $(y, z) \in R$.

Then $x + y \in \mathbb{Z}$ or $x - y \in \mathbb{Z}$, and $y + z \in \mathbb{Z}$ or $y - z \in \mathbb{Z}$. Suppose $x + y \in \mathbb{Z}$. Then $y \pm z \in \mathbb{Z}$, and $x + y - (y \pm z) = x \pm z$, so $x \pm z \in \mathbb{Z}$. That is, $x + z \in \mathbb{Z}$ or $x - z \in \mathbb{Z}$. Suppose $x - y \in \mathbb{Z}$. Then $y \pm z \in \mathbb{Z}$ and $x - y + (y \pm z) = x \pm z$, so $x \pm z \in \mathbb{Z}$ That is $x + z \in \mathbb{Z}$ or $x - z \in \mathbb{Z}$. Hence, $x + z \in \mathbb{Z}$ or $x - z \in \mathbb{Z}$, so $(x, z) \in R$. Thus, $(x, y) \in R$ and $(y, z) \in R$ then $(x, y) \in R$, and so R is transitive.

Since *R* is reflexive, symmetric, and transitive, *R* is an equivalence relation. \blacksquare