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1. Let A and B be sets. Prove that P(A \B) ⊆ P(A) \ P(B).

Proof: Let A and B be sets.

Suppose S ∈ P(A \B).

Then S ⊆ A \B.

Suppose x ∈ S.

Then x ∈ A and x 6∈ B.

So x ∈ S implies x ∈ A, and hence S ⊆ A.

Thus, S ∈ P(A).
Since x ∈ S does not imply x ∈ B, we conclude that S 6∈ B, so S 6∈ P(B).

Hence, S ∈ P(A) \ P(B).

Thus, S ∈ P(A \B) implies S ∈ P(A) \ P(B), and so P(A \B) ⊆ P(A) \ P(B). �



2. Let F and G be non-empty families (i.e., sets of sets). Prove that (
⋂
F) ∩ (

⋂
G) =

⋂
(F ∪ G).

Proof: Let F and G be non-empty families.

Suppose x ∈ (
⋂
F) ∩ (

⋂
G).

Then x ∈
⋂

F and x ∈
⋂

G.

Suppose S ∈ F ∪ G ( we are trying to show that x is in
⋂
(F ∪ G).)

Then S ∈ F or S ∈ G.

If S ∈ F , then x ∈ S, since x ∈
⋂
F .

If S ∈ G, then x ∈ S, since x ∈
⋂
G.

Hence, x ∈ S.

So S ∈ F ∪ G implies x ∈ S, and so x ∈
⋂
(F ∪ G)

Thus, x ∈ (
⋂
F) ∩ (

⋂
G) implies x ∈

⋂
(F ∪ G), and hence (

⋂
F) ∩ (

⋂
G) ⊆

⋂
(F ∪ G).

Now, suppose x ∈
⋂

(F ∪ G).
Suppose S ∈ F .

Then S ∈ F ∪G, so x ∈ S since x ∈
⋂
(F ∪ G) .

Hence, S ∈ F implies x ∈ S, and so x ∈
⋂
F .

Suppose S ∈ G.

Then S ∈ F ∪G, so x ∈ S since x ∈
⋂
(F ∪ G) .

Hence, S ∈ G implies x ∈ S, and so x ∈
⋂
G.

So, x ∈ (
⋂
F) ∩ (

⋂
G).

Thus, x ∈
⋂

(F ∪ G) implies x ∈ (
⋂
F) ∩ (

⋂
G), and hence

⋂
(F ∪ G) ⊆ (

⋂
F) ∩ (

⋂
G).

Therefore, (
⋂
F) ∩ (

⋂
G) =

⋂
(F ∪ G).�



3. Let A, B and C be sets. Prove that A ∪ C ⊆ B ∪ C iff A \ C ⊆ B \ C.

Proof: Let A, B, and C be sets.

Suppose A ∪ C ⊆ B ∪ C.

Suppose x ∈ A \ C.

Then x ∈ A and x 6∈ C.

Then x ∈ A ∪ C, and so x ∈ B ∪ C.

That is, x ∈ B or x ∈ C.

But, x 6∈ C, so x ∈ B.

Hence, x ∈ B \ C.

Thus, x ∈ A \ C implies x ∈ B \ C, so A \ C ⊆ B \ C.

Thus, A ∪ C ⊆ B ∪ C implies A \ C ⊆ B \ C.

Now, suppose A \ C ⊆ B \ C.

Suppose x ∈ A ∪ C.

Then x ∈ A or x ∈ C.

If x ∈ C, then x ∈ B ∪ C.

Suppose x 6∈ C.

Then x ∈ A, so x ∈ A \ C.

Hence, x ∈ B \ C, and so x ∈ B, and thus x ∈ B ∪ C.

Thus, x ∈ A ∪ C implies x ∈ B ∪ C, so A ∪ C ⊆ B ∪ C.

Thus, A \ C ⊆ B \ C implies A ∪ C ⊆ B ∪ C.

Hence, A ∪ C ⊆ B ∪ C iff A \ C ⊆ B \ C. �



4. Use induction to prove that, for all integers n ≥ 0,

n∑
i=0

1

3i
=

3

2
− 1

2 · 3n
.

Proof: For all integers n ≥ 0, let P (n) be the statement “
n∑

i=0

1

3i
=

3

2
− 1

2 · 3n
”.

We proceed by induction.

Base Case: Let n = 0.

Then
n∑

i=0

1

3i
=

0∑
i=0

1

3i
=

1

30
= 1 =

3

2
− 1

2
=

3

2
− 1

2 · 30
=

3

2
− 1

2 · 3n
.

So P (0) is true.

Induction Step: Suppose P (k) is true for some k ∈ Z≥0.

Then

k+1∑
i=0

1

3i
=

1

3k+1
+

k∑
i=0

1

3i

=
1

3k+1
+

3

2
− 1

2 · 3k

=
3

2
+

2

2 · 3k+1
− 3

2 · 3k+1

=
3

2
− 1

2 · 3k+1
.

Hence, P (k + 1) is true.

Thus, P (n) implies P (n + 1), and since P (0) is true, by induction P (n) is true for all
integers n ≥ 0. �



5. Let R ⊆ R× R be defined by

(x, y) ∈ R iff x− y ∈ Z or x+ y ∈ Z.

Is R an equivalence relation? Support your answer with a proof.

Answer: R is an equivalence relation.

Proof: Suppose R is the relation defined above.

Reflexivity: Suppose x ∈ R.

Then x− x = 0 ∈ Z, so (x, x) ∈ R.

Hence, x ∈ R implies (x, x) ∈ R, and so R is reflexive.

Symmetry: Suppose (x, y) ∈ R.

Then x− y ∈ Z or x+ y ∈ Z.

If x− y is an integer, then y − x = (−1)(x− y) is an integer.

If x+ y is an integer, then y + x = x+ y is an integer.

Hence, y − x ∈ Z or y + x ∈ Z, and so (y, x) ∈ R.

Thus, (x, y) ∈ R implies (y, x) ∈ R, and so R is symmetric.

Transitivity: Suppose (x, y) ∈ R and (y, z) ∈ R.

Then x+ y ∈ Z or x− y ∈ Z, and y + z ∈ Z or y − z ∈ Z.

Suppose x+ y ∈ Z.

Then y ± z ∈ Z, and x+ y − (y ± z) = x± z, so x± z ∈ Z.

That is, x+ z ∈ Z or x− z ∈ Z.

Suppose x− y ∈ Z.

Then y ± z ∈ Z and x− y + (y ± z) = x± z, so x± z ∈ Z
That is x+ z ∈ Z or x− z ∈ Z.

Hence, x+ z ∈ Z or x− z ∈ Z, so (x, z) ∈ R.

Thus, (x, y) ∈ R and (y, z) ∈ R then (x, y) ∈ R, and so R is transitive.

Since R is reflexive, symmetric, and transitive, R is an equivalence relation. �


