Math 300 E - Winter 2019 Midterm Exam Number Two February 27, 2019 Answers

1. Let A and B be sets. Prove that $\mathcal{P}(A \backslash B) \subseteq \mathcal{P}(A) \backslash \mathcal{P}(B)$.

Proof: Let A and B be sets.
Suppose $S \in \mathcal{P}(A \backslash B)$.
Then $S \subseteq A \backslash B$.
Suppose $x \in S$.
Then $x \in A$ and $x \notin B$.
So $x \in S$ implies $x \in A$, and hence $S \subseteq A$.
Thus, $S \in \mathcal{P}(A)$.
Since $x \in S$ does not imply $x \in B$, we conclude that $S \notin B$, so $S \notin \mathcal{P}(B)$.
Hence, $S \in \mathcal{P}(A) \backslash \mathcal{P}(B)$.
Thus, $S \in \mathcal{P}(A \backslash B)$ implies $S \in \mathcal{P}(A) \backslash \mathcal{P}(B)$, and so $\mathcal{P}(A \backslash B) \subseteq \mathcal{P}(A) \backslash \mathcal{P}(B)$.
2. Let \mathcal{F} and \mathcal{G} be non-empty families (i.e., sets of sets). Prove that $(\cap \mathcal{F}) \cap(\cap \mathcal{G})=\bigcap(\mathcal{F} \cup \mathcal{G})$.

Proof: Let \mathcal{F} and \mathcal{G} be non-empty families.
Suppose $x \in(\cap \mathcal{F}) \cap(\cap \mathcal{G})$.
Then $x \in \bigcap F$ and $x \in \bigcap G$.
Suppose $S \in \mathcal{F} \cup \mathcal{G}$ (we are trying to show that x is in $\bigcap(\mathcal{F} \cup \mathcal{G})$.)
Then $S \in \mathcal{F}$ or $S \in \mathcal{G}$.
If $S \in \mathcal{F}$, then $x \in S$, since $x \in \bigcap \mathcal{F}$.
If $S \in \mathcal{G}$, then $x \in S$, since $x \in \bigcap \mathcal{G}$.
Hence, $x \in S$.
So $S \in \mathcal{F} \cup \mathcal{G}$ implies $x \in S$, and so $x \in \bigcap(\mathcal{F} \cup \mathcal{G})$
Thus, $x \in(\bigcap \mathcal{F}) \cap(\bigcap \mathcal{G})$ implies $x \in \bigcap(\mathcal{F} \cup \mathcal{G})$, and hence $(\cap \mathcal{F}) \cap(\cap \mathcal{G}) \subseteq \bigcap(\mathcal{F} \cup \mathcal{G})$.
Now, suppose $x \in \bigcap(\mathcal{F} \cup \mathcal{G})$.
Suppose $S \in F$.
Then $S \in F \cup G$, so $x \in S$ since $x \in \bigcap(\mathcal{F} \cup \mathcal{G})$.
Hence, $S \in F$ implies $x \in S$, and so $x \in \bigcap \mathcal{F}$.
Suppose $S \in G$.
Then $S \in F \cup G$, so $x \in S$ since $x \in \bigcap(\mathcal{F} \cup \mathcal{G})$.
Hence, $S \in G$ implies $x \in S$, and so $x \in \bigcap \mathcal{G}$.
So, $x \in(\cap \mathcal{F}) \cap(\cap \mathcal{G})$.
Thus, $x \in \bigcap(\mathcal{F} \cup \mathcal{G})$ implies $x \in(\cap \mathcal{F}) \cap(\cap \mathcal{G})$, and hence $\bigcap(\mathcal{F} \cup \mathcal{G}) \subseteq(\cap \mathcal{F}) \cap(\cap \mathcal{G})$.
Therefore, $(\cap \mathcal{F}) \cap(\cap \mathcal{G})=\bigcap(\mathcal{F} \cup \mathcal{G})$.
3. Let A, B and C be sets. Prove that $A \cup C \subseteq B \cup C$ iff $A \backslash C \subseteq B \backslash C$.

Proof: Let A, B, and C be sets.
Suppose $A \cup C \subseteq B \cup C$.
Suppose $x \in A \backslash C$.
Then $x \in A$ and $x \notin C$.
Then $x \in A \cup C$, and so $x \in B \cup C$.
That is, $x \in B$ or $x \in C$.
But, $x \notin C$, so $x \in B$.
Hence, $x \in B \backslash C$.
Thus, $x \in A \backslash C$ implies $x \in B \backslash C$, so $A \backslash C \subseteq B \backslash C$.
Thus, $A \cup C \subseteq B \cup C$ implies $A \backslash C \subseteq B \backslash C$.

Now, suppose $A \backslash C \subseteq B \backslash C$.
Suppose $x \in A \cup C$.
Then $x \in A$ or $x \in C$.
If $x \in C$, then $x \in B \cup C$.
Suppose $x \notin C$.
Then $x \in A$, so $x \in A \backslash C$.
Hence, $x \in B \backslash C$, and so $x \in B$, and thus $x \in B \cup C$.
Thus, $x \in A \cup C$ implies $x \in B \cup C$, so $A \cup C \subseteq B \cup C$.
Thus, $A \backslash C \subseteq B \backslash C$ implies $A \cup C \subseteq B \cup C$.
Hence, $A \cup C \subseteq B \cup C$ iff $A \backslash C \subseteq B \backslash C$.
4. Use induction to prove that, for all integers $n \geq 0$,

$$
\sum_{i=0}^{n} \frac{1}{3^{i}}=\frac{3}{2}-\frac{1}{2 \cdot 3^{n}}
$$

Proof: For all integers $n \geq 0$, let $P(n)$ be the statement " $\sum_{i=0}^{n} \frac{1}{3^{i}}=\frac{3}{2}-\frac{1}{2 \cdot 3^{n}}$ ".
We proceed by induction.
Base Case: Let $n=0$.
Then

$$
\sum_{i=0}^{n} \frac{1}{3^{i}}=\sum_{i=0}^{0} \frac{1}{3^{i}}=\frac{1}{3^{0}}=1=\frac{3}{2}-\frac{1}{2}=\frac{3}{2}-\frac{1}{2 \cdot 3^{0}}=\frac{3}{2}-\frac{1}{2 \cdot 3^{n}}
$$

So $P(0)$ is true.
Induction Step: Suppose $P(k)$ is true for some $k \in \mathbb{Z}_{\geq 0}$.
Then

$$
\begin{aligned}
\sum_{i=0}^{k+1} \frac{1}{3^{i}} & =\frac{1}{3^{k+1}}+\sum_{i=0}^{k} \frac{1}{3^{i}} \\
& =\frac{1}{3^{k+1}}+\frac{3}{2}-\frac{1}{2 \cdot 3^{k}} \\
& =\frac{3}{2}+\frac{2}{2 \cdot 3^{k+1}}-\frac{3}{2 \cdot 3^{k+1}} \\
& =\frac{3}{2}-\frac{1}{2 \cdot 3^{k+1}} .
\end{aligned}
$$

Hence, $P(k+1)$ is true.
Thus, $P(n)$ implies $P(n+1)$, and since $P(0)$ is true, by induction $P(n)$ is true for all integers $n \geq 0$.
5. Let $R \subseteq \mathbb{R} \times \mathbb{R}$ be defined by

$$
(x, y) \in R \text { iff } x-y \in \mathbb{Z} \text { or } x+y \in \mathbb{Z}
$$

Is R an equivalence relation? Support your answer with a proof.
Answer: R is an equivalence relation.
Proof: Suppose R is the relation defined above.
Reflexivity: Suppose $x \in \mathbb{R}$.
Then $x-x=0 \in \mathbb{Z}$, so $(x, x) \in R$.
Hence, $x \in \mathbb{R}$ implies $(x, x) \in R$, and so R is reflexive.
Symmetry: Suppose $(x, y) \in R$.
Then $x-y \in \mathbb{Z}$ or $x+y \in \mathbb{Z}$.
If $x-y$ is an integer, then $y-x=(-1)(x-y)$ is an integer.
If $x+y$ is an integer, then $y+x=x+y$ is an integer.
Hence, $y-x \in \mathbb{Z}$ or $y+x \in \mathbb{Z}$, and so $(y, x) \in R$.
Thus, $(x, y) \in R$ implies $(y, x) \in R$, and so R is symmetric.

Transitivity: Suppose $(x, y) \in R$ and $(y, z) \in R$.
Then $x+y \in \mathbb{Z}$ or $x-y \in \mathbb{Z}$, and $y+z \in \mathbb{Z}$ or $y-z \in \mathbb{Z}$.
Suppose $x+y \in \mathbb{Z}$.
Then $y \pm z \in \mathbb{Z}$, and $x+y-(y \pm z)=x \pm z$, so $x \pm z \in \mathbb{Z}$.
That is, $x+z \in \mathbb{Z}$ or $x-z \in \mathbb{Z}$.
Suppose $x-y \in \mathbb{Z}$.
Then $y \pm z \in \mathbb{Z}$ and $x-y+(y \pm z)=x \pm z$, so $x \pm z \in \mathbb{Z}$
That is $x+z \in \mathbb{Z}$ or $x-z \in \mathbb{Z}$.
Hence, $x+z \in \mathbb{Z}$ or $x-z \in \mathbb{Z}$, so $(x, z) \in R$.
Thus, $(x, y) \in R$ and $(y, z) \in R$ then $(x, y) \in R$, and so R is transitive.
Since R is reflexive, symmetric, and transitive, R is an equivalence relation.

