
A short introduction to bases

(note: throughout, square brackets indicate the greatest integer of the enclosed quantity)

When we write the number 1251, we are expressing the quantity

1× 103 + 2× 102 + 5× 101 + 1× 100.

When we express a number in this way, we say that 10 is the base.

We can express 1251 in other bases.

For instance, suppose we use the base 12.

If we look at powers of 12, we see

120 = 1

121 = 12

122 = 144

123 = 1728

Since 1728 > 1251, we won’t need it to represent 1251 in base 12.

Instead, we start by seeing how many multiples of 144 are needed:

1251

12
= 8.6875

so
[

1453

12

]

= 8.

This tells us that the third base-12 digit of 1251 is 8. Then, we subtract: 1251 − (8)(144) = 99.
Dividing 99 by 12 we see that

[

99

12

]

= 8. Subtracting, we find 99− (8)(12) = 3. So the right-most
digit is 3.

What we’ve done is calculate that

1251 = 8× 122 + 8× 121 + 3× 120

and so, in base 12, 1251 would be written as 883.

Notationally this can be confusing, so one convention is to subscript the numbers with the base
to keep things straight:

125110 = 88312.

Formally, what we are doing is this. Given a base β that is a positive integer and a positive
integer n, we are determing a finite sequence of integers {ak, ak−1, . . . , a1, a0}, with 0 ≤ ai < β

for i = 0, . . . , k − 1 and 1 ≤ ak < β such that

n = akβ
k + ak−1β

k−1 + · · ·+ a1β + a0.

For negative n, you can do the same thing, and just preface it all with a minus sign.



When it comes to writing out such an expression, we can run into some trouble if any of the
ai is greater than or equal to 10, since if we don’t take special measures, the expression may be
ambiguous. For instance, in base 12, if we write 3210, do we mean

3× 123 + 2× 122 + 1× 121 + 0

or do we mean
32 + 2× 121 + 10?

To get around this problem, for small bases anyway, some people use capital letters of the
alphabet to represent integers greater than 9: A= 10, B= 11, C= 12, etc. This is especially
common in hexadecimal, i.e., base 16, where we have expressions like

A5C216 = 10× 163 + 5× 162 + 12× 161 + 2 = 4234310

Here’s another example of a base conversion. Suppose we want to write 578 in base 2 (also
known as binary).

We can begin by considering powers of 2.

20 = 1

21 = 2

22 = 4

23 = 8

24 = 16

25 = 32

26 = 64

27 = 128

28 = 256

29 = 512

210 = 1024

Since 210 > 578, we do not need it when writing 578 in binary. Binary is actually the easiest
base to do conversions to, since the only digits are 0 and 1, so we just have to decide what is
the largest power needed at each stage.

Since 578 > 512, we need a 1 in the 29 place.

Then, 578− 512 = 66, so we have 0 at the 28 and 27 place, but a 1 at the 26 place.

Then 66− 26 = 2, so all other places have zeros, except for a 1 at the 21 place.

Thus, we know

578 = 1×29+1×26+1×21 = 1×29+0×28+0×27+1×26+0×25+0×24+0×23+0×22+1×21+0×20

and so,
57810 = 10010000102



As you might guess, the smaller the base, the more digits you will need to represent a number.

In fact, it is not hard to show that a positive integer n requires

1 +

[

lnn

ln β

]

digits to be represented in base β.

Exercises

For practice, you can verify the following equivalencies. (You can do this without working
through the conversion procedure illustrated in examples above, but that’s probably what you
ought to practice here, since the other way to verify these is relatively trivial.)

1. 12310 = 2347 = 10211 = 111203

2. 500010 = 237813 = 173515

3. 10011102 = 5814

4. F424016 = 100000010


