Math 301 A - Spring 2014
 Final Exam
 June 11, 2014

Name: \qquad Student ID no. : \qquad

1	10
2	10
3	10
4	10
5	10
6	10
7	10
Total	70

- Complete all seven questions.
- Show all work for full credit.
- You have 110 minutes to complete the exam.
- You may use a non-graphing, scientific calculator. All other electronic devices must be turned off and put away until you have left the room.
- No notes, texts or references of any kind are allowed during the exam.
- You may not share calculators or any other material with other students during the exam.
- You may not speak until you have turned in your exam and left the room.

My signature indicates that I have read and understood the instructions above:
Signature: \qquad

1. Prove that the product of three consecutive integers is divisible by 60 if the middle integer is a perfect square.
2. Let i be a non-negative integer. Prove that the number

$$
8 \cdot 64^{i}+25 \cdot 7^{i}
$$

is not prime.
3. Suppose x is the smallest integer greater than 10000 such that

$$
3 x \equiv 5(\bmod 61) \text { and } 5 x \equiv 3(\bmod 62) .
$$

Find x.
4. Find the largest integer that cannot be expressed as a sum of non-negative multiples of 5,7 and 13. Prove that this is the largest such integer.
5. Suppose (x, y, z) is a primitive Pythagorean triple, with $z>x$ and $z>y$. Prove that 3 divides exactly one of x and y, and 3 does not divide z. (If you wish to use a result proved in homework, you will need to prove it again here.)
6. Prove that there are no solutions to $5 x^{2}+7 y^{2}=z^{2}$ with $x, y, z \in \mathbb{Z}$ and $x y z \neq 0$.
7. Define the sequence $\left\{a_{n}\right\}$ by

$$
a_{0}=1, a_{1}=1, \text { and } a_{n}=a_{n-1}-a_{n-2} \text { for } n \geq 2 .
$$

Express the generating function for $\left\{a_{n}\right\}$ as a rational function (i.e., not as a series).

Here is a list of theorems and other facts that you can use without justification during the exam. This is only a partial list! Many minor results may be used without justification. This list is merely a reference of the more powerful and, perhaps, harder to remember ones.

- There are infinitely many primes.
- The transitivity of divisibilty: if a divides b, and b divides c, then a divides c.
- If d divides a and d divides b, then d divides any linear combination of a and b.
- If d and n are positive integers, and d divides n, then $d \leq n$.
- If a prime p divides $a b$, then p divides a or p divides b.
- The Fundamental Theorem of Arithmetic: all positive integers can be written in a unique way as a product of primes.
- The Euclidean algorithm for finding the gcd of two integers
- Stark, Theorem 2.3: n is a common divisor of a and b iff n divides $\operatorname{gcd}(a, b)$.
- Stark, Theorem 2.6: If $(n, a)=1$ and $n \mid a b$, then $n \mid b$.
- Stark, Theorem 2.13: The n-th root of a positive integer is rational iff it is an integer.
- The result from problem 6 in the week 2 homework (i.e., if $d \mid n$, then the prime factorization of d consists only of primes from the prime factorization of n, with exponents no greater than the corresponding exponents in the prime factorization of n).
- $\tau(n)=\prod_{p^{\alpha} \| n}(\alpha+1), \sigma(n)=\prod_{p^{\alpha} \| n} \frac{p^{\alpha+1}-1}{p-1}, \phi(n)=n \prod_{p^{\alpha} \| n}\left(1-\frac{1}{p}\right)$
- For positive integers a and b, and any prime p,

$$
\operatorname{ord}_{p} a b=\operatorname{ord}_{p} a+\operatorname{ord}_{p} b \text { and } \operatorname{ord}_{p}(a+b) \leq \min \left\{\operatorname{ord}_{p} a, \operatorname{ord}_{p} b\right\}
$$

- The Chinese Remainder Theorem: Let $m_{1}, m_{2}, \ldots, m_{k}$ be pairwise relatively prime positive integers. Then the system $x \equiv a_{1}\left(\bmod m_{1}\right), x \equiv a_{2}\left(\bmod m_{2}\right), \ldots, x \equiv a_{k}\left(\bmod m_{k}\right)$ has a unique solution modulo $m_{1} m_{2} \cdots m_{k}$.
- Euler's Theorem: Let n be a positive integer. Then $a^{\phi(n)} \equiv 1(\bmod n)$ if $(a, n)=1$.
- Frobenius Coin Theorem: Let $a, b>0$ and $(a, b)=1$. Then the equation $a x+b y=m$ has no non-negative solutions (x, y) if $m=a b-a-b$ and does have solutions if $m>a b-a-b$.
- Primitive Pythagorean Triples: $x^{2}+y^{2}=z^{2}$ where $x, y, z \in \mathbb{Z}, x>0, y>0, z>0,(x, y)=1$ and $2 \mid x$ iff $x=2 a b, y=a^{2}-b^{2}$ and $z=a^{2}+b^{2}$ for some $a, b \in \mathbb{Z}, a>b>0,(a, b)=1$, and $a+b \equiv 1(\bmod 2)$.
- Generating functions: The generating function of a sequence $\left\{a_{n}\right\}$ is the function given by the power series $A(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$.

