Math 301 A - Spring 2014
 Final Exam
 June 11, 2014
 Solutions

1. Prove that the product of three consecutive integers is divisible by 60 if the middle integer is a perfect square.
Proof: Let n be a perfect square, and let $P=(n-1) n(n+1)$ be the product of the three consecutive integers with n in the middle.
Since n is a perfect square, n is congruent to 0 or 1 modulo 4 .
If $n \equiv 0(\bmod 4)$, then $4 \mid P$.
If $n \equiv 1(\bmod 4)$, then $n-1 \equiv 0(\bmod 4)$, and so $4 \mid n-1$, and hence $4 \mid P$.
Thus, $4 \mid P$.
We have that n is congruent to 0,1 , or 2 modulo 3 . If $n \equiv 0(\bmod 3)$, then $3 \mid n$ and $3 \mid P$.
If $n \equiv 1(\bmod 3)$, then $3 \mid n-1$, and $3 \mid P$.
If $n \equiv 2(\bmod 3)$, then $3 \mid n+1$, and $3 \mid P$.
Thus $3 \mid P$.
Looking at squares modulo 5 , we see:

n	$n^{2} \bmod 5$
0	0
1	1
2	4
3	4
4	1

Hence, n is congruent to 0,1 , or 4 . For each value we have $n, n-1$, and $n+1$ congruent to 0 modulo 5 , respectively.
Hence, $5 \mid P$.
Since $3|P, 4| P$ and $5 \mid P$, and $(3,4,5)=1$, we conclude that $3 \cdot 4 \cdot 5=60 \mid P$.
2. Let i be a non-negative integer. Prove that the number

$$
8 \cdot 64^{i}+25 \cdot 7^{i}
$$

is not prime.
Proof: We can start by observing that

$$
\begin{aligned}
& 8 \cdot 64^{0}+25 \cdot 7^{0}=33 \equiv 0(\bmod 3) \\
& 8 \cdot 64^{1}+25 \cdot 7^{1}=687 \equiv 0(\bmod 3) \\
& 8 \cdot 64^{2}+25 \cdot 7^{2}=33993 \equiv 0(\bmod 3)
\end{aligned}
$$

and this gives us the idea that perhaps $8 \cdot 64^{i}+25 \cdot 7^{i}$ is always divisible by 3 .
Reducing modulo 3 , we find that $8 \cdot 64^{i}+25 \cdot 7^{i} \equiv 2 \cdot 1^{i}+1 \cdot 1^{i} \equiv 3 \equiv 0(\bmod 3)$.
Hence, 3 always divides $8 \cdot 64^{i}+25 \cdot 7^{i}$ for non-negative i.
Since $8 \cdot 64^{i}+25 \cdot 7^{i} \geq 8 \cdot 64^{0}+25 \cdot 7^{0}=33>3$, we conclude that $8 \cdot 64^{i}+25 \cdot 7^{i}$ is never prime for non-negative i.
3. Suppose x is the smallest integer greater than 10000 such that

$$
3 x \equiv 5(\bmod 61) \text { and } 5 x \equiv 3(\bmod 62)
$$

Find x.
Multiplying $3 x \equiv 5(\bmod 61)$ by 20 yields $60 x \equiv 100(\bmod 61)$ and subtracting this from $61 x \equiv 61(\bmod 61)$ yields

$$
x \equiv-39 \equiv 22(\bmod 61)
$$

Thus $x=22+61 k$ for some integer k.
Using the second given congruence yields

$$
\begin{array}{r}
5(22+61 k) \equiv 3(\bmod 62) \\
110+305 k \equiv 3(\bmod 62) \\
57 k \equiv 17(\bmod 62)
\end{array}
$$

Sutracting this last congruence from $62 k \equiv 62(\bmod 62)$ yields

$$
5 k \equiv 45(\bmod 62)
$$

and since 5 divides 45 , and $(45,62)=1$, we conclude

$$
k \equiv 9(\bmod 62)
$$

Thus $k=9+62 m$ for some integer m, and hence $x=22+61(9+62 m)=571+3782 m$.
Since $2<10000 / 3782<3$, and $8135=571+3782 \cdot 2$ and $11917=571+3782 \cdot 3$, we conclude that $x=11917$.
4. Find the largest integer that cannot be expressed as a sum of non-negative multiples of 5,7 and 13. Prove that this is the largest such integer.

16 is the largest such integer.
First we prove that 16 cannot be expressed as a sum of non-negative multiples of 5,7 , and 13.

Suppose $16=5 a+7 b+13 c$ where a, b and c are non-negative integers.
Since $2 \cdot 13=26>16$, we conclude that $c=0$ or $c=1$.
Suppose $c=1$. Then $3=5 a+7 b$, but $5 a+7 b>=5$ unless $a=b=0$, in which case $3=0$, a contradiction. So $c \neq 1$.
Suppose $c=0$. Then $16=5 a+7 b$. Since $7 \cdot 3=21>16, b=0,1$, or 2 . If $b=0$, then $a=16 / 5$ which is not an integer. If $b=1$, then $a=9 / 5$ which is not an integer. If $b=2$, then $a=2 / 5$ which is not an integer. In all three cases, we have a contradiction. So $c \neq 0$.

Thus we arrive at the contradiction that $c=0$ or $c=1$ and $c \neq 0$ and $c \neq 1$.
Hence our assumption that 16 was so expressible was false, and we conclude that 16 is not so expressible.
Now,

$$
\begin{aligned}
17 & =5 \cdot 2+7 \cdot 1+13 \cdot 0 \\
18 & =5 \cdot 1+7 \cdot 0+13 \cdot 1 \\
19 & =5 \cdot 1+7 \cdot 2+13 \cdot 0 \\
20 & =5 \cdot 4+7 \cdot 0+13 \cdot 0 \\
\text { and } 21 & =5 \cdot 0+7 \cdot 3+13 \cdot 0 .
\end{aligned}
$$

Let $m>21$ be an integer. Then m is congruent to one of $17,18,19,20$, or 21 modulo 5. Say m is congruent to z modulo 5 , and $17 \leq z \leq 21$ and $z=5 r+7 s+13 t$. Then $m=5 r+7 s+13 t+5 u=5(r+u)+7 s+13 t$ for some positive integer u, and so every integer greater than 16 can be represented as the sum of non-negative multiples of 5,7 , and 13.
5. Suppose (x, y, z) is a primitive Pythagorean triple, with $z>x$ and $z>y$. Prove that 3 divides exactly one of x and y, and 3 does not divide z. (If you wish to use a result proved in homework, you will need to prove it again here.)
Proof: We could prove this using our theorem on primitive pythagorean triples, but here I'll give a proof that doesn't use this.
Suppose (x, y, z) is a primitive pythagorean triple, with $z>x$ and $z>y$.
Then $x^{2}+y^{2}=z^{2}$, and the gcd of x, y, and z is 1 .
As a result, we know that 3 does not divide all three values, x, y, and z.
The squares modulo 3 are 0 and 1 .
Note that, for any integer $n, 3 \mid n$ iff $3 \mid n^{2}$.
Adding these, we have the following table of possibilities:

+	0	1
0	0	1
1	1	2

This tells us several things. First, that, since z^{2} is the sum of two squares, it is not congruent to $2 \bmod 3$, and hence x or y is congruent to $0 \bmod 3$. However, x and y cannot both be congruent to $0 \bmod 3$; for in that case, z would also be congruent to 0 , and the triple would not be primitive. Hence, exactly one of x and y is divisible by 3 , and as a result z is not divisible by 3 .
6. Prove that there are no solutions to $5 x^{2}+7 y^{2}=z^{2}$ with $x, y, z \in \mathbb{Z}$ and $x y z \neq 0$.

Proof: Suppose $5 x^{2}+7 y^{2}=z^{2}$ for some $x, y, z \in \mathbb{Z}$, and $x y z \neq 0$, with z as small as possible (i.e., suppose that if $5 a^{2}+7 b^{2}=c^{2}$ with $a, b, c \in \mathbb{Z}$ and $a b c \neq 0$, then $c \geq z$).

We may assume without loss of generality that $x>0, y>0$ and $z>0$. (For, if any of x, y and z is negative, we can replace it by its absolute value.)

Then $7 y^{2} \equiv z^{2}(\bmod 5)$, i.e.

$$
2 y^{2} \equiv z^{2}(\bmod 5)
$$

In problem 1, we noted that the squares modulo 5 are 0,1 , and 4 . Hence that possible values of $2 y^{2}$ modulo 5 are 0,2 , and 3 .
But, since $2 y^{2} \equiv z^{2}(\bmod 5), 2 y^{2} \equiv z^{2} \equiv 0(\bmod 5)$.
Hence, $5 \mid y^{2}$, and so $5 \mid y$. Also, $5 \mid z^{2}$, and $5 \mid z$.
Write $y=5 y^{\prime}$ and $z=5 z^{\prime}$ for some integers y^{\prime} and z^{\prime}.
Then

$$
\begin{aligned}
5 x^{2}+7\left(5 y^{\prime}\right)^{2} & =\left(5 z^{\prime}\right)^{2} \\
5 x^{2}+25 \cdot 7 y^{\prime 2} & =25 z^{\prime 2} \\
x^{2}+5 \cdot 7 y^{\prime 2} & =5 z^{\prime 2}
\end{aligned}
$$

and so $5 \mid x^{2}$ and $5 \mid x$.
Write $x=5 x^{\prime}$ for some integer x^{\prime}.
Then

$$
5\left(5 x^{\prime}\right)^{2}+7\left(5 y^{\prime}\right)^{2}=\left(5 z^{\prime}\right)^{2}
$$

So

$$
5\left(x^{\prime}\right)^{2}+7\left(y^{\prime}\right)^{2}=\left(z^{\prime}\right)^{2}
$$

However, since $z>0, z^{\prime}<z$, and this is a contradiction to our assumption that we had the solution with the smallest possible z.
Hence, there is no solution to $5 x^{2}+7 y^{2}=z^{2}$, with $x, y, z \in \mathbb{Z}$, and $x y z \neq 0$.
7. Define the sequence $\left\{a_{n}\right\}$ by

$$
a_{0}=1, a_{1}=1, \text { and } a_{n}=a_{n-1}-a_{n-2} \text { for } n \geq 2
$$

Express the generating function for $\left\{a_{n}\right\}$ as a rational function (i.e., not as a series).
Let $A(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$.
From $a_{n}=a_{n-1}-a_{n-2}$ for $n \geq 2$, we have

$$
\begin{aligned}
\sum_{n=2}^{\infty} & =\sum_{n=2}^{\infty} a_{n-1} x^{n}-\sum_{n=2}^{\infty} a_{n-2} x^{n} \\
& =\sum_{n=1}^{\infty} a_{n} x^{n+1}-\sum_{n=0}^{\infty} a_{n} x^{n+2} \\
A(x)-x-1 & =x(A(x)-1)-x^{2}(A(x)) \\
A(x)-x A(x)+x^{2} A(x) & =-x+x+1 \\
A(x) & =\frac{1}{1-x+x^{2}} .
\end{aligned}
$$

