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Midterm Exam

April 23, 2014

Answers

1. Find the gcd of a = 163438 and b = 16150 and express the gcd as a linear combination of a and b.

Applying the Euclidean algorithm, we have

163438 = (10)(16150) + 1938 so (163438, 16150) = (16150, 1938);

16150 = (8)(1938) + 646 so (163438, 16150) = (1938, 646);

1938 = (3)(646) + 0 so (163438, 16150) = 646.

Using these equations, we can write

646 = 16150− (8)(1938)

646 = 16150− (8)(163438− (10)(16150))

646 = (81)(16150)− (8)(163438).

2. How many zeros does 321! end in (when written in decimal notation)?

We know that, for any prime, and any positive integer n,

ordpn! =
∞
∑

i=1

[

n

pi

]

where only finitely many terms are non-zero: once pi > n then

[

n

pi

]

= 0.

The number of trailing of zeros of 321! is the value of k such that 10k exactly divides 321!.

Since 10 = 5 · 2, this k value can be determined by finding ord2321! and ord5321!.

However, since
[

n
2i

]

≥
[

n
5i

]

for all i > 0, we can simply find ord5321!:

ord5321! =

[

321

5

]

+

[

321

52

]

+

[

321

53

]

=

[

321

5

]

+

[

321

25

]

+

[

321

125

]

= 64 + 12 + 2 = 78.

Hence, 578||321!, and so 1078 divides 321!, but 1079 does not divide 321!.

Thus, 321! ends in 78 zeros. If we like, we can check this by counting them: 321! =
679269174457380047028785170185919186947307915378873794717504834800056699
620107556588363406711769787197195178862008179089783397511787291509841159
447296698243478466739056566182553499706936922318110750836973692573813672
250633204183009258104385355180663770974611994543043088808911065034505710
742622493294337180339627744007411619661923211692633961412869634120499252
010840025650326123715557128540459760461684735762027568521406316170120640
288596098543945942754314954146518452656699065041569649506333465354135988
135665347667173854434722462264095651475843741418032851023524292353047920
605881853542400000000000000000000000000000000000000000000000000000000000
0000000000000000000.



3. (a) Give an example of two different positive integers with (exactly) 600 divisors.

We know that pm, where p is a prime and m is a positive integer has exactly m+1 divisors.

So, 2599 and 3599 are two different positive integers with exactly 600 divisors.

(b) What is the smallest positive integer with (exactly) 600 divisors that you can find? (You do
not have to find the smallest integer with 600 divisors, just try to find one as small as you can -
the smaller the better!)

We know that if n is positive integer with prime factorization

n = pα1

1
· pαk

k

with all p prime and all α positive, then n has (α1 + 1) · (αk + 1) divisors.

So, if we want 600 divisors, we can factor 600 and match up the factors with these α + 1
factors.

For example, 600 = 2 · 300. Subtracting 1 from 2 and 300 we have 1 and 299. Hence, the
number 2 · 3299 has 600 divisors.

But, 2299 · 3 has 600 divisors, too, and is smaller.

By factoring 600 further, we can get still smaller ones. For example, since 600 = 5·5·3·2·2·2,
the number

32432400 = 24 · 34 · 52 · 7 · 11 · 13

has 600 divisors (this happens to be the smallest such number, but it takes a little work to
prove this - the smallest number with m divisors is not always found by factoring m into
primes and then just subtracting one from each prime and throwing them into exponents
- try finding the smallest number with 64 divisors, for instance).

4. For what integers n is n2 − 1 a prime number? State and prove a theorem that answers this
question.

Theorem: Suppose n is an integer. Then n2 − 1 is prime iff n = ±2.

Proof: Suppose n = ±2. Then n2 − 1 = 3, and 3 is prime.

Now, suppose n is an integer and p = n2 − 1 is prime.

If n = 0, then n2 − 1 = −1 which is not prime.

If n = ±1, then n2 − 1 = 0, which is not prime.

Since (−n)2 − 1 = n2 − 1, we will assume for now that n > 1.

Suppose n > 2. Then n − 1 > 1 and so p = (n + 1)(n − 1) is a product of two integers
greater than 1 and hence is not prime. This contradicts our assumption that p is prime.

Hence, n ≤ 2, and so n = 2 is the only possible value for n > 0.

Hence if n2 − 1 is prime, then n = ±2.

Thus, n2 − 1 is prime iff n = ±2. �



5. Prove that the product of two consecutive integers, both greater than 2, has at least three (not
necessarily distinct) prime factors.

Proof: Let a < b be two consecutive integers, with a > 2.

Then b− a = 1, so (a, b) = 1.

Exactly one of a and b is even; without loss of generality, suppose a is even.

Then (a, b) = (a
2
, b) and, since a > 2, a

2
> 1.

Hence, there exist (distinct) primes p1 and p2 such that p1|
a

2
and p2|b.

Hence,
(a

2

)

b has at least 2 prime factors, and so 2
(a

2

)

b = ab has at least 3 prime factors.�

6. Prove that
ln 2

ln 3
is irrational.

Proof: Suppose
ln 2

ln 3
is rational.

Then there exist integers a and b, b 6= 0, with
ln 2

ln 3
=

a

b
.

Then we have

b ln 2 = a ln 3

ln 2b = ln 3a

2b = 3a.

As a and b are integers, there are a few things we can say at this point.

By the Fundamental Theorem of Arithmetic, we know that two different factorizations of
a positive integer is impossible. So this is a contradiction.

Or, we might just note that, since b 6= 0, 2 divides 2b and so must divide 3a. Since we know
2 6 | 3a, this is a contradiction.

Hence, we may conclude that our assumption that
ln 2

ln 3
is rational is false.

Thus,
ln 2

ln 3
is irrational. �


