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In the Beginning

The development of automatic digital

computers has made it possible to carry

out computations involving a very large

number of arithmetic operations and

this has stimulated a study of the

cumulative effect of rounding errors.

J. H. Wilkinson, Rounding Errors in Algebraic Processes, 1963



Rounding Errors and Stability

The output of an algorithm A is defined by f : Rn 7→ R.

� f∞(x): Output when A is executed in infinite precision

� f(x): Output when A is executed in finite precision

Rounding errors are measured by |f∞(x)− f(x)|

For backward-stable computations,

f∞(x+ δx) = f(x)

for small perturbations δx.



Rounding Errors: A Cautionary Example

f = x;

for k = 1:L f = sqrt(f); end; for k = 1:L f = f^2; end;

f = f^2;

Plot of f for L = 50 (left) and L ≥ 55 (right)

N. Higham, Accuracy and Stability of Numerical Algorithms, 2002

W. Kahan, Interval arithmetic options in the proposed IEEE standard, 1980



Assessments of Roundoff

Repeat the computation but . . .

� in higher precision

� with a different rounding mode

� with random rounding

� use slightly different inputs

� use interval arithmetic

Monte Carlo arithmetic: How to gamble with floating point and win,
D. S. Parker, B. Pierce and P. R. Eggert, Computing in Science Engineering, 2000

How futile are mindless assessments of roundoff in floating-point computation?
W. Kahan, 2006. Work in progress, 56 pages.

CADNA: A library for estimating round-off error propagation,
F. Jézéquél and J-M. Chesneaux, Computer Physics Communications, 2008.



Uncertainty and Computational Noise

The uncertainty in f is an estimate of

|f(x+ δx)− f(x)|

for a small perturbation δx.

If the computed f is backward-stable, then the uncertainty is

|f∞(x+ δxr)− f(x)|

for a small δxr. This is an estimate of the rounding errors.

J. Moré and S. Wild, Estimating computational noise, SIAM Journal on
Scientific Computing, 2011.



Research Issues

� What is a noisy function f?

� Determine the noise (uncertainty) in f with a few evaluations

� Reliably approximate a derivative of f

� How do you optimize f?



Computational Noise ∼ Uncertainty

Definition. The noise level of f in a region Ω is

εf = E

{
1
2

(
f(x2)− f(x1)

)2}1/2

, iid x1,x2 7→ Ω.

where Ω contains x0 and all permissible perturbations of x0

Leading causes of noise

� 10X flops

� Iterative calculations

� Adaptive algorithms

� Mixed precision



Two Theorems

Theorem 1. If F is the space of all iid x 7→ Ω,

εf = Var {f(x)}1/2 = E
{
|f(x)− µ|2

}1/2
, x ∈ F

where µ is the expected value of f(x).

Theorem 2. If f is a step function with values v1 . . . vp, then
there are weights wk ≥ 0 with

∑
wk = 1 such that

εf =

(
p∑

k=1

wk(vk − µ)2

)1/2

where µ is the (weighted) average of the function values.

The function x 7→ f [chop(x, t)] is a step function.



The Noise Level εf and Uncertainty

Let µ be the expected value of f(x).

Chebyshev inequality

P
{
|f(x)− µ| ≤ γεf

}
≥ 1− 1

γ2
, γ ≥ 1.

Cauchy-Schwartz inequality

E {|f(x)− µ|} ≤ εf

Two Claims

� The noise level εf is a measure of the uncertainty of f

� We can determine εf in a few function evaluations



Case Study: The Higham Function

f = x;

for k = 1:L f = sqrt(f); end; for k = 1:L f = f^2; end;

f = f^2;

εr(k) = 2(−k+52)



Case Study: Mixed Precision Quadratics

x 7→ ‖chop(x, t)‖2 where chop(x, t) truncates x ∈ Rn to t bits

n = 4 (left) and n = 104 (right)



Case Study: Eigenvalue Solvers

f(x) =

p∑
i=1

λi

(
A+ diag (x)

)
, p = 5

where λi(·) is the i-th smallest eigenvalue in magnitude.

εf = 3.5 10−7

A is the sparse Laplacian on an L-shaped region

eigs with τ = 10−3.



Case Study: Linear (Krylov) Solvers

f(x) = ‖A−1x‖2

bicgstab, εf = 7.8 10−3 pcg , εf = 1.6 10−8

Sparse matrix A from the University of Florida collection, τ = 10−3

index = 38 (left) , index = 35 (right)



Analysis

A realistic model of a finite-precision function is defined by

f(t) ≡ fs[x(t)], t ∈ [0, 1]

where fs : R 7→ R is smooth (fs = f∞ is an option)

This model accounts for

� Changes in computer, software libraries, operating system, . . .

� Code changes and reformulations

� Asynchronous, highly-concurrent algorithms

� Stochastic methods

� Variable/adaptive precision methods



ECnoise: Computing the Noise Level

f(t) = fs(t) + ε(t), t ∈ [0, 1]

� Construct the k-th order differences of f

∆k+1f(t) = ∆kf(t+ h)−∆kf(t).

� Note that εf can be determined from ∆kε(t)

γk E
{[

∆kε(t)
]2}

= ε2f , γk =
(k!)2

(2k)!
.

� Estimate the noise level of f from

lim
h→0

γk E
{[

∆kf(t)
]2}

= ε2f ,

R. W. Hamming, Introduction to Applied Numerical Analysis, 1971

J. Moré and S. Wild, Estimating computational noise, 2011.



ECnoise: Difference Tables

1.56e+03 -6.92e+00 1.32e+00 3.40e+01 -1.21e+02 2.93e+02 -6.12e+02

1.56e+03 -5.61e+00 3.53e+01 -8.70e+01 1.72e+02 -3.19e+02

1.55e+03 2.97e+01 -5.17e+01 8.53e+01 -1.46e+02

1.58e+03 -2.20e+01 3.36e+01 -6.11e+01

1.56e+03 1.16e+01 -2.75e+01

1.57e+03 -1.59e+01

1.56e+03

Noise levels

1.24e+01 1.39e+01 1.57e+01 1.77e+01 1.93e+01 2.01e+01

bicgstab, index = 38, εf = 7.8 10−3

5.29e+02 7.53e-06 -5.74e-06 -8.38e-06 3.41e-05 -4.74e-05 -7.65e-06

5.29e+02 1.80e-06 -1.41e-05 2.58e-05 -1.33e-05 -5.51e-05

5.29e+02 -1.23e-05 1.16e-05 1.25e-05 -6.84e-05

5.29e+02 -6.82e-07 2.41e-05 -5.59e-05

5.29e+02 2.34e-05 -3.18e-05

5.29e+02 -8.38e-06

5.29e+02

Noise levels

8.32e-06 8.08e-06 7.08e-06 5.35e-06 3.24e-06 2.52e-07

pcg, index = 35, εf = 1.6 10−8



Krylov Solvers: Distribution of εf (τ)

Define fτ : Rn 7→ R as the iterative solution of a Krylov solver,

fτ (x) = ‖yτ (x)‖2, ‖Ayτ (x)− b‖ ≤ τ‖b‖,

where b is a function of the input x. We use b = x.

yτ : Rn 7→ Rn is continuously differentiable for almost all τ

� UF symmetric positive definite matrices (116) with n ≤ 104

� Scaling: A← D−1/2AD−1/2, D = diag(ai,i)

� Solvers: bicgstab (similar results for pcg, minres, gmres, . . . )

� Tolerances: τ ∈ [10−8, 10−1]



What is the Noise Level of Krylov Solvers?

Distribution of εf for fτ (bicgstab)



Noise Level Transitions

εf as a function of tolerance τ



Impact of Noise on Derivatives

We measure the uncertainty of f ′ with

re(f ′) = re
{
f ′(x0; p), f

′(x0; (1 + ε)p)
}
, ε = εM .

� With infinite precision re(f ′) = ε/(1 + ε) for any ε > 0

� We expect re(f ′) to be small in floating point arithmetic.

Two AD algorithms (forward mode) were used to compute f ′:

� IntLab (Siegfried Rump, Hamburg)

� AdiMat (Andre Vehreschild, Aachen)

IntLab was used in the numerical results.



Can You Trust Derivatives?

Distribution of re(f ′τ ) for fτ (bicgstab)



re(f ′τ )� εf

Distribution of (εf , re(f ′τ )) for fτ (bicgstab)
Dashed line is (t, t)



Optimal Difference Estimate of the Derivative

Define the RMS expected error in the derivative by

E(h) = E

{(
f(t0 + h)− f(t0)

h
− f ′s(t0)

)2
}1/2

.

Theorem. If µL = min |f ′′|, µM = max |f ′′|, and

h∗ = γ2

(
εf
µ

)1/2

, γ2 = 81/4 ≈ 1.68,

where µ is an estimate of |f ′′(t0)| in [µL, µM ], then

E(h∗) ≤ (γ1µM εf )1/2 ≤
(
µM

µL

)1/2

min
0<h≤h0

E(h)



Optimal Difference Parameter

The estimate µ of |f ′′(t0)| is obtained from

µ =
f(t0 − h)− 2f(t0) + f(t0 + h)

h2

where h is of order ε
1/4
f . Set

δf(t0) =
f(t0 + h∗)− f(t0)

h∗

Claim: If re(δf, f ′) is the relative error between δf and f ′, then

re(δf, f ′) ∼ re(δf) ≡ E(h∗)

|f ′(t0)|



re(δf) ∼ re(δf, f ′)

Distribution of (re(δfτ ), re(δfτ , f
′
τ )) for fτ (bicgstab)

Dashed line is (t, t)



Further Reading

S. Wild, Estimating Computational Noise in Numerical Simulations
www.mcs.anl.gov/~wild/cnoise

� J. Moré and S. Wild, Estimating Computational Noise, SIAM
Journal on Scientific Computing, 33 (2011), 1292-1314.

� J. Moré and S. Wild, Estimating Derivatives of Noisy
Simulations, ACM Trans. Mathematical Software, 38 (2012),
19:1–19:21

� J. Moré and S. Wild, Do You Trust Derivatives or
Differences?, Journal of Computational Physics, 273 (2014),
268 – 277.

www.mcs.anl.gov/~wild/cnoise

