Conjugate Interior Point Methods for Large-Scale Problems

Aleksandr Y. Aravkin

UW Applied Math

Happy Birthday, Jim!!
WCOM, Seattle
May 14, 2016

■ Modeling with Piecewise linear-quadratic functions
■ PLQ class, theory, and calclulus (with J.V. Burke and G. Pillonetto)

- Applications with IPsolve

■ Dynamic systems inference (with J.V. Burke, G. Pillonetto, and B. Bell)

- Quantile Huber (with A. Lozano, R. Luss, A. Kambadur)
- Sparse difference graphs (with D. Orban, H. Liu, R. Vanderbei, C. Eisenach, Y. Liu).
- System identification (with J.V. Burke and G. Pillonetto)
- Meta-parameters (with P. Zheng, K. Ramamurthy, and JJ Thiagarajan).

■ Code: https://github.com/saravkin/IPsolve

$$
\begin{array}{ll}
\min _{x} & V(A x-b)+J(G x-w) \\
\text { s.t. } & x \in \mathcal{X}
\end{array}
$$

■ Data misfit V : good results in the face of large measurement errors
■ Regularization J : prior information e.g. sparsity or process model
■ Constraints: use information about feasible region

Here, V, J can come from a large class of piecewise linear quadratic (PLQ) penalties.

Regression
Robust regression
Lasso

$$
\begin{equation*}
\|A x-b\|^{2} \tag{2}
\end{equation*}
$$

$$
\rho(A x-b)
$$

$$
\|A x-b\|^{2}+\lambda\|x\|_{1}
$$

$$
H(\mathbf{1}-A x)+\frac{1}{2}\|w\|^{2}
$$

$$
\frac{1}{N(1-\beta)} H(A x-\alpha e)+\alpha+\delta_{\Delta}(x) \quad \text { hinge }+ \text { aff }+ \text { const }
$$

System ID
Kalman smoother

$$
\|H x-z\|_{R^{-1}}^{2}+\|G x-w\|_{Q^{-1}}^{2}
$$

$$
\ell_{2}^{2}+\ell_{2}^{2}
$$

Quadratic

Figure: $\frac{1}{2} x^{2}=\sup _{u \in \mathbb{R}}\left\{u x-\frac{1}{2} u^{2}\right\}$.

■ linear and nonlinear regression [Fre09, SW03]

- inverse problems [Tik].

■ Features: symmetric, smooth, quadratic tail growth.

Figure: $|x|=\sup _{u \in[-1,1]}\{u x\}$.

- machine learning and compressed sensing [HT90, EHJT04, Don06],
- image denoising [SED05, MES08, MSNW10],

■ seismic image processing [HH08, NKK $\left.{ }^{+} 10, \mathrm{HFY} 12, \mathrm{MWLH} 12\right]$.

- Features: symmetric, nonmsooth, linear tail growth

Figure: $h_{\epsilon}(x)=\sup _{u \in[0,1]}\{u(x-\epsilon)\}$.

- support vector classifiers [EPP00, PV98, SSWB00].
- Conditional Value at Risk and Superquantiles [RU00]

■ Features: 1-sided, nonmsmooth, linear tail growth.

Figure: $q_{\tau}(x)=\sup _{u \in[-\tau,(1-\tau)]}\{u x\}$.

- heterogeneous datasets [KB78, Buc94]
- computational biology [ZY08]
- survival analysis [KG01]
- economics [KH01, Koe05]

■ Features: asymmetric, nonsmooth, linear tail growth

Figure: $h_{\kappa}(x)=\sup _{u \in[-\kappa, \kappa]}\left\{u x-\frac{1}{2} u^{2}\right\}$.

- robust regression [Hub04, MMY06, BN07, DH81, Cla85, LS98]
- Kalman smoothing [ABP13a]
- System identification [ABP13b]
- robust PCA and robust matrix completion $\left[\mathrm{AKM}^{+} 14, \mathrm{ABD}^{+} 16\right]$
- Features: symmetric, smooth, linear tail growth.

Figure: $h_{\tau, \kappa}(x)=\sup _{u \in[-\kappa \tau, k(1-\tau)]}\left\{u x-\frac{1}{2} u^{2}\right\}$.

- alternative to the quantile penalty in the high-dimensional setting [AKLL14]
- We will come back to this example

■ Features: asymmetric, smooth, linear tail growth.

Figure: $\rho_{\epsilon}(x)=\sup _{u \in[0,1]^{2}}\left\{\left\langle\left[\begin{array}{c}1 \\ -1\end{array}\right] x-\left[\begin{array}{l}\epsilon \\ \epsilon\end{array}\right], u\right\rangle\right\}$.

- support vector regression (SVR) [Vap98, HTF01, SSWB00, SS01]

■ Features: 'deadzone', symmetric, nonsmooth, linear tail growth.

elastic net

Figure: $\quad \rho(x)=\sup _{u \in[0,1] \times \mathbb{R}}\left\{\left\langle\left[\begin{array}{l}1 \\ 1\end{array}\right] x, u\right\rangle-\frac{1}{2} u^{T}\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right] u\right\}$.

■ sparse regularization with correlated predictors [ZH05b, ZH05a, LL+ 10 , DMDVR09].

■ Features: symmetric, nonsmooth at origin, quadratic tail growth.

Explicit encoding of PLQ functions

Define $\rho(C, c, M, b, B ; \cdot): \mathbb{R}^{n} \rightarrow \mathbb{R}$ as

$$
\rho(C, c, b, B, M ; y)=\sup _{C u \leq c}\left\{\langle u, b+B y\rangle-\frac{1}{2}\langle u, M u\rangle\right\}
$$

I $M \in \mathbb{R}^{m \times m}$ is a symmetric positive semidefinite matrix.
2 $b+B y$ is an injective affine transformation with $B \in \mathbb{R}^{m \times n}$.
$3\{u \mid C u \leq c\} \subset \mathbb{R}^{m}$ is a polyhedral containing the origin.

The encoding makes it possible to build general problems from component parts (V, J, affine compositions).

- (Addition)Given two PLQ penalties

$$
\rho\left(c_{1}, C_{1}, B_{1}, b_{1}, M_{1} ; y\right) \quad \text { and } \quad \rho\left(c_{2}, C_{2}, B_{2}, b_{2}, M_{2} ; y\right)
$$

their sum is also a PLQ penalty $\rho(c, C, B, b, M ; y)$ with

$$
c=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right], \quad C=\left[\begin{array}{cc}
C_{1} & 0 \\
0 & C_{2}
\end{array}\right], \quad b=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right], \quad B=\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right], \quad M=\left[\begin{array}{cc}
M_{1} & 0 \\
0 & M_{2}
\end{array}\right]
$$

- (Addition)Given two PLQ penalties

$$
\rho\left(c_{1}, C_{1}, B_{1}, b_{1}, M_{1} ; y\right) \quad \text { and } \quad \rho\left(c_{2}, C_{2}, B_{2}, b_{2}, M_{2} ; y\right)
$$

their sum is also a PLQ penalty $\rho(c, C, B, b, M ; y)$ with

$$
c=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right], \quad C=\left[\begin{array}{cc}
C_{1} & 0 \\
0 & C_{2}
\end{array}\right], \quad b=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right], \quad B=\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right], \quad M=\left[\begin{array}{cc}
M_{1} & 0 \\
0 & M_{2}
\end{array}\right]
$$

■ (Affine composition) Given a PLQ penalty $\rho(c, C, b, B, M ; y)$, we have

$$
\rho(P x-p)=\rho(c, C, b-B p, B P, M ; y) .
$$

■ (Addition) Given two PLQ penalties

$$
\rho\left(c_{1}, C_{1}, B_{1}, b_{1}, M_{1} ; y\right) \quad \text { and } \quad \rho\left(c_{2}, C_{2}, B_{2}, b_{2}, M_{2} ; y\right)
$$

their sum is also a PLQ penalty $\rho(c, C, B, b, M ; y)$ with

$$
c=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right], \quad C=\left[\begin{array}{cc}
C_{1} & 0 \\
0 & C_{2}
\end{array}\right], \quad b=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right], \quad B=\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right], \quad M=\left[\begin{array}{cc}
M_{1} & 0 \\
0 & M_{2}
\end{array}\right]
$$

■ (Affine composition) Given a PLQ penalty $\rho(c, C, b, B, M ; y)$, we have

$$
\rho(P x-p)=\rho(c, C, b-B p, B P, M ; y)
$$

- (Smoothing) Smoothing with quadratics preserves PLQ.

$$
\rho_{\gamma}(c, C, M, b, B ; y)=\rho(c, C, M+\gamma I, b, B ; y)
$$

Moreau envelope (Burke \& Hoheisel 2013):

$$
e_{\gamma} \rho(c, C, M, b, B ; y)=\rho\left(c, C, M+\gamma B B^{T}, b, B ; y\right)
$$

Consider now the minimization problem

$$
\min _{y} \rho(c, C, b, B, M ; y) \quad \text { s.t. } \quad A y \leq a
$$

Introduce slack variables s and r :

$$
C u+s=c, \quad A y+r=a .
$$

Let q, w be dual variables corresponding to these constraints. The KKT system (optimality conditions) is given by

$$
\begin{aligned}
& 0=B^{T} u+A^{T} w \\
& 0=B y-M u-C^{T} q+b \\
& 0=C u+s-c \\
& 0=A y+r-a \\
& 0=q_{i} s_{i} \forall i, q, s \geq 0 \\
& 0=w_{i} r_{i} \forall i, w, r \geq 0 .
\end{aligned}
$$

From here, implement an interior point method (see Kojima et al., 1991; Nemirovskii and Nesterov, 1994; Wright, 1997.)

IPsolve: Interior Point via Conjugate Representation

Interior point methods relax the complementarity conditions:

$$
q_{i} s_{i}=\mu, \quad w_{i} r_{i}=\mu
$$

and μ is aggressively taken to 0 , so at the end the true KKT system is (nearly) satisfied. The μ-relaxed KKT system looks like this:

$$
F_{\mu}(\underbrace{s, q, u, r, w, y}_{z})=\left[\begin{array}{c}
s+C u-c \\
Q S 1-\mu 1 \\
B y-M u-C^{T} q+b \\
r+A y-a \\
W R 1-\mu 1 \\
B^{T} u+A^{T} w
\end{array}\right]
$$

To solve, take damped Newton iterations: $\mathbf{F}_{\mu}^{(\mathbf{1})} \boldsymbol{\Delta z}=-\mathbf{F}_{\mu}$, where

$$
F_{\mu}^{(1)}:=\left[\begin{array}{cccccc}
I & 0 & C & 0 & 0 & 0 \\
Q & S & 0 & 0 & 0 & 0 \\
0 & -C^{T} & -M & 0 & 0 & B \\
0 & 0 & 0 & I & 0 & A \\
0 & 0 & 0 & W & R & 0 \\
0 & 0 & B^{T} & 0 & A^{T} & 0
\end{array}\right]
$$

We can exploit problem structure to make each Newton step efficient.
Aravkin, Burke, Pillonetto, JMLR 2013

Exploiting Sparsity of Conjugate Representation:

Instead, can put $c-C u$ directly into barrier, then take

$$
q_{i}=\mu /\left(c_{i}-\left\langle C_{i}, u\right\rangle\right), \quad w_{i} r_{i}=\mu
$$

The new μ-relaxed KKT system looks like this:

$$
F_{\mu}(\underbrace{q, u, r, w, y}_{z})=\left[\begin{array}{c}
q \operatorname{diag}(c-C u)-\mu \mathbf{1} \\
B y-M u-C^{T} q+b \\
W R 1-\mu 1 \\
r+A y-a \\
B^{T} u+A^{T} w
\end{array}\right]
$$

To solve, take damped Newton iterations: $\mathbf{F}_{\mu}^{(\mathbf{1})} \boldsymbol{\Delta z}=-\mathbf{F}_{\mu}$, where

$$
F_{\mu}^{(1)}:=\left[\begin{array}{ccccc}
\operatorname{diag}(c-C u) & -Q C^{T} & 0 & 0 & 0 \\
0 & -C^{T} & -M & 0 & B \\
0 & 0 & W & R & 0 \\
0 & 0 & I & 0 & A \\
0 & B^{T} & 0 & A^{T} & 0
\end{array}\right]
$$

Smaller system, maintains feasibility of conjugate variables.

Exploiting problem structure

- Each IP iteration requires a matrix solve.
- Reduced the matrix $F^{(1)}$ to upper triangular form:

$$
\begin{gathered}
{\left[\begin{array}{ccccc}
D & -Q C^{T} & 0 & 0 & 0 \\
0 & -T & 0 & 0 & B \\
0 & 0 & W & R & 0 \\
0 & 0 & 0 & -R W^{-1} & A^{T} \\
0 & 0 & 0 & 0 & B^{T} T^{-1} B+A W R^{-1} A^{T}
\end{array}\right],} \\
\\
\\
\\
\\
\end{gathered}
$$

■ D, T, Q, R, W sparse (diagonal).

- B contains the full linear model; A the imposed constraints.

■ We are guaranteed $C u \leq c$ at each iteration.

Applications

- Kalman filters and smoothers are
- ubiquitous in navigation systems (planes, space, robots, UAV's)
- used as a first step for e.g. 3D model reconstruction (NASA)
- important for climate/weather models (ensemble KF)
- used in PK/PD modelling to track drug concentrations
- used in finance (trend filtering)
- connected to many research areas, including belief propagation/graphical models, functional reconstruction, smoothing splines, dynamic linear models, stochastic differential equations
- Original Kalman filter paper was written in 1960, and the topic still continues to be a hot research area for engineering, statistics, optimization, PDE, SDE, and many applied communities.

■ In 2009, Rudolf Kalman received the National Science Award from President Obama for the Kalman filter.

- Goal: to obtain estimates on states $\left\{x_{k}\right\}$ given measurements $\left\{z_{k}\right\}$

■ State evolution models $x_{k}=g_{k}\left(x_{k-1}\right)+w_{k}$.

- Initialization: $x_{1}=x_{0}+w_{1}$.

■ Measurement model: $z_{k}=h_{k}\left(x_{k}\right)+v_{k}$

States

Measurements

Example : tracking a smooth signal

$$
\begin{aligned}
& {\left[\begin{array}{l}
\dot{x}_{k+1} \\
x_{k+1}
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
\Delta t & I
\end{array}\right]\left[\begin{array}{l}
\dot{x}_{k} \\
x_{k}
\end{array}\right]+\left[\begin{array}{l}
w_{k}(1) \\
w_{k}(2)
\end{array}\right], \quad Q_{k}=\sigma_{q}^{2}\left[\begin{array}{cc}
\Delta t & \Delta t^{2} / 2 \\
\Delta t^{2} / 2 & \Delta t^{3} / 3
\end{array}\right],} \\
& z_{k}=\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
\dot{x}_{k} \\
x_{k}
\end{array}\right]+v_{k}, \quad R_{k}=\sigma_{r}^{2} .
\end{aligned}
$$

Method works well! But what would you do if I told you the signal was always between $[-1,1]$?

Example 2: impulsive disturbances in DC motor

■ State: angular velocity, angle of motor shaft.

- Input u : applied torque (known).
- disturbances d : impulsive, unknown.
- Dynamics:
$x_{k+1}=\left(\begin{array}{ll}0.71 & 0 \\ 0.08 & 1\end{array}\right) x_{k}+\binom{11.8}{0.63}\left(u_{t}+d_{t}\right)$,

$$
z_{k}=\left(\begin{array}{ll}
0 & 1
\end{array}\right) x_{k}+e_{k}
$$

Right panel: Best linear estimator of impulsive disturbances d_{t} is poor. Need a better J to model d_{t}.

■ Outliers: 10% of measurements are corrupted by outliers.
■ Left: Gaussian model with nominal variance (outliers pull estimate)

- Right: Best linear estimate (cannot track signal well)

■ Main point: We need a better V to model measurement errors.

$$
\begin{array}{ll}
R=\operatorname{diag}\left(\left\{R_{k}\right\}\right) & x=\operatorname{vec}\left(\left\{x_{k}\right\}\right) \\
Q=\operatorname{diag}\left(\left\{Q_{k}\right\}\right) & \eta=\operatorname{vec}\left(\left\{\bar{x}_{0}, 0, \ldots, 0\right\}\right) \\
H & =\operatorname{diag}\left(\left\{H_{k}\right\}\right) \\
z=\operatorname{vec}\left(\left\{z_{1}, z_{2}, \ldots, z_{N}\right\}\right)
\end{array} \quad G=\left[\begin{array}{cccc}
\mathrm{I} & 0 & & \\
-G_{2} & \mathrm{I} & \ddots & \\
& \ddots & \ddots & 0 \\
& & -G_{N} & \mathrm{I}
\end{array}\right]
$$

Take gradient, set it equal to 0 :

$$
\left(H^{\top} R^{-1} H+G^{\top} Q^{-1} G\right) x=H^{\top} R^{-1} z+G^{\top} Q^{-1} \eta
$$

Classic algorithms (KF, RTS, MF, M) are easily interpretable as linear algebraic operations on this system.

Aravkin, Bell, Burke, Pillonetto, http://arxiv.org/abs/1303.5237

- We consider the entire class of PLQ smoothers where we use general PLQ penalties for process J and measurement V.
- Solve the optimization problem

$$
\min _{x \in \mathcal{X}} J(\mu-G x)+V(z-H x) .
$$

■ We also impose constraints $x \in \mathcal{X}$ on the state.

Complexity preserved by interior point

IP iterations require inverting following linear system:

$$
\left[\begin{array}{ccccc}
D & -Q C^{T} & 0 & 0 & 0 \\
0 & -T & 0 & 0 & B \\
0 & 0 & W & R & 0 \\
0 & 0 & 0 & -R W^{-1} & A^{T} \\
0 & 0 & 0 & 0 & B^{T} T^{-1} B+A W R^{-1} A^{T}
\end{array}\right]
$$

For Kalman smoothing model, we have $B=\left[\begin{array}{l}Q^{-1 / 2} G \\ R^{-1 / 2} H\end{array}\right]$.
So Schur complement is block tridiagonal PD:
$B^{T} T^{-1} B=\left[G^{T} Q^{-T / 2} T_{1}^{-1} Q^{-1 / 2} G+H^{T} R^{-T / 2} T_{2}^{-1} R^{-1 / 2} H\right]$
Constraints: $A W R^{-1} A^{T}$ also block tridiagonal if (...)?
So, we preserve classical complexity results, of $O\left(n^{3} N\right)$ per iteration.

Constrained results

Two examples of linear constraints, using ℓ_{2}^{2} for J and V. Black solid line is true signal, black dash-dot line is unconstrained Kalman smoother, and blue dashed line is the constrained Kalman smoother.

- Left: impulsive disturbance. Use ℓ_{1} for J, ℓ_{2}^{2} for V.
- Right: outliers. Use ℓ_{2}^{2} for J, ℓ_{1} or huber for V.

High dimensional sparse regression

■ Genomic data: 206 cases, 18K locations (SNPs).
■ Question: which genetic locations (SNPs) are associated with disease?
■ Use sparsity (ℓ_{1} for J), and quantile penalty for V.

■ Figure: top SNPs obtained by sparse QR on Alzheimers data persistent SNPs include a hotspot associated with APOE gene.

- Background references for QR:
- Koenker, R. and Bassett, G, Econometrica, pp. 33-50, 1978.
- Koenker, R. and Geling, O. J. ASA, 96:458-468, 2001.

Quantile vs. Quantile Huber

- Convex and nonconvex sparsity formulations:

$$
\begin{gathered}
\min _{x} \rho_{q}(b-A x)+\lambda\|x\|_{1} \\
\min _{x} \rho_{q}(b-A x) \quad \text { s.t. }\|x\|_{0} \leq k .
\end{gathered}
$$

■ Run a series of experiments for $q=0.1,0.2, \ldots, 0.9$.
■ We propose smooth (huber) quantile loss (why?).

Quantile vs. Quantile Huber

- Convex and nonconvex sparsity formulations:

$$
\begin{gathered}
\min _{x} \rho_{q}(b-A x)+\lambda\|x\|_{1} \\
\min _{x} \rho_{q}(b-A x) \quad \text { s.t. }\|x\|_{0} \leq k .
\end{gathered}
$$

■ Run a series of experiments for $q=0.1,0.2, \ldots, 0.9$.

- We propose smooth (huber) quantile loss (why?).

■ We solve ℓ_{0} with a generalized OMP, with ipSolve as subroutine.

Generalized OMP

- Initialization: $r=b, S^{(0)}=\emptyset$

■ For: $j=1, \ldots \mathrm{k}$:

$$
\begin{aligned}
& r^{(j)}=b-A_{S^{(j)}} x^{(j)} \\
& i_{(j)}=\arg \max _{i}\left|\nabla \rho\left(r^{(j)}\right)^{T} A_{i}\right|
\end{aligned}
$$

(Maximum projection onto generalized residuals)

$$
S^{(j)}=S^{(j-1)} \cup\left\{i_{(k)}\right\}
$$

■ Refitting Step: ipSolve

$$
x^{(j)}=\arg \min _{x: x_{i}=0, i \notin S^{(j)}} \rho(b-A x)
$$

$$
n=300, p=400
$$

$n=300, p=800$

- $F_{1}=2 \frac{\operatorname{Pr} \times \operatorname{Rec}}{\operatorname{Pr}+\operatorname{Rec},}, \operatorname{Pr}=\frac{t p}{t p+f p}, \operatorname{Rec}=\frac{t p}{t p+f n}$.
- Huber quantile is more accurate than quantile.
- ℓ_{0} formulations have superior accuracy to ℓ_{1}.

Aravkin, Kambadur, Lozano, Luss, ICDM 2014

Large-scale Approach

Inexact methods for linear systems

■ We would like inexact methods to handle very large problems, and problems where we can only use matrix-vector products.

- Specialized methods exist for specific applications, mostly for sparse optimization (Koh et al. 2007, Fountoulakis et. al. 2013)
- These methods exploit special structure of 1-norm regularizer to develop efficient preconditioners.

■ We want to develop inexact methods for our linear system!

Linear system from conjugate formulation

- Recall the key step is solving $\mathbf{F}_{\mu}^{(\mathbf{1})} \Delta \mathbf{z}=-\mathbf{F}_{\mu}$, where

$$
F_{\mu}^{(1)}:=\left[\begin{array}{ccccc}
\operatorname{diag}(c-C u) & -Q C^{T} & 0 & 0 & 0 \\
0 & -C^{T} & -M & 0 & B \\
0 & 0 & W & R & 0 \\
0 & 0 & I & 0 & A \\
0 & B^{T} & 0 & A^{T} & 0
\end{array}\right]
$$

- Most structures here are extremely sparse (some diagonal).
- B encodes linear model, A is the constraint matrix.

■ System is special, since we have primal, conjugate, and dual variables.

A simple approach

- Start with reduced $F^{(1)}$:

$$
\left[\begin{array}{ccccc}
D & -Q C^{T} & 0 & 0 & 0 \\
0 & -T & 0 & 0 & B \\
0 & 0 & W & R & 0 \\
0 & 0 & 0 & -R W^{-1} & A^{T} \\
0 & 0 & 0 & 0 & B^{T} T^{-1} B+A W R^{-1} A^{T}
\end{array}\right]
$$

- There are many ways to solve original system, this is just one of them.

■ Strategy: solve lower block approximately, then get exact updates for the other variables.

■ For some ML problems, IP iterations require remarkably few linear solver iterations.

Sparse difference graphs

■ Data: sample covariance $\Sigma_{1}, \Sigma_{2}, \Delta \Sigma=\Sigma_{2}-\Sigma_{1}$.

- Target: sparse estimate of $X=\Theta_{1}-\Theta_{2}=\Sigma_{1}^{-1}-\Sigma_{2}^{-1}$.
- Key identity:

$$
\Sigma_{1}\left(\Theta_{1}-\Theta_{2}\right) \Sigma_{2}=\Sigma_{1}\left(\Sigma_{1}^{-1}-\Sigma_{2}^{-1}\right) \Sigma_{2}=\Sigma_{2}-\Sigma_{1}=\Delta \Sigma
$$

- Formulation:

$$
\min _{X}\|X\|_{1} \quad \text { s.t. } \quad\left\|\Sigma_{1} X \Sigma_{2}-\Delta \Sigma\right\|_{\infty} \leq \lambda
$$

- λ controls fidelity to observed data.
- Vectorization: $\operatorname{vec}\left(\Sigma_{1} X \Sigma_{2}\right)=\left(\Sigma_{2} \otimes \Sigma_{1}\right) x$.
- Special structure: matrix vector products are $O\left(n^{3}\right)$, not $O\left(n^{4}\right)$.
- This is a linear program (!) but using IPsolve and block structure, we have matrix-free implementation.

COBRE Illustration

■ 72 healthy and 74 Alzheimers' brains are compared

- lower λ means tighter constraints, less sparsity ($\lambda=0.5$ shown)
- can potentially be used as a diagnostic tool to detect differences between healthy and unhealthy brains

Joint work with C. Eisenach, H. Liu, Y. Liu, D. Orban, R. Vanderbei

- COBRE dataset has covariance matrices that are 116×116.
- This gives primal problem dimensions of 13456×13456.

λ	0.9	0.8	0.7	0.6	0.5
Time (s)	23	28	70	113	276

Table: Average runtime for IPSolve in seconds for varying levels of λ.

λ	0.9	0.8	0.7	0.6	0.5
Time (s)	580	659	573	565	575

Table: Runtime for CPLEX in seconds for varying levels of λ.

- Approach scales for larger (synthetic) matrices, and the problem is always more difficult for higher fidelity requirements.
- PLQ penalties appear in a range of data science, high dimensional inference, and machine learning problems.

■ We can use conjugate representations of these penalties to design easily customizable interior-point methods.

- Features of PLQ models (smoothness, asymmetry, tail growth) with constraints capture a wide range of useful models for applications.
- Some current work:

■ Semi-parametric inference (e.g. quantile parameter) (Peng, Karthik, JJ)

- Convex-composite extensions (Jim, Dima)
- Splitting methods for PLQ (Damek Davis)
- Robust CVaR (Xin Chen)

Congratulations, Jim, and thank you!!

國 Aleksandr Y Aravkin，James V Burke，Dmitriy Drusvyatskiy， Michael P Friedlander，and Scott Roy，Level－set methods for convex optimization，arXiv preprint arXiv：1602．01506（2016）．
E A．Aravkin，J．V．Burke，and G．Pillonetto，Sparse／robust estimation and kalman smoothing with nonsmooth log－concave densities：Modeling，computation，and theory， Journal of Machine Learning Research 14 （2013），2689－2728．
R Aleksandr Aravkin，James V．Burke，and Gianluigi Pillonetto，Linear system identification using stable spline kernels and plq penalties，Decision and Control（CDC）， 2013 IEEE 52nd Annual Conference on，IEEE，2013，pp．5168－5173．
目
A．Aravkin，P．Kambadur，A．C．Lozano，and R．Luss，Orthogonal matching pursuit for sparse quantile regression，Data Mining （ICDM），International Conference on，IEEE，2014，pp．11－19．
國 A．Aravkin，R．Kumar，H．Mansour，B．Recht，and F．J．Herrmann， Fast methods for denoising matrix completion formulations，
with applications to robust seismic data interpolation，SIAM Journal on Scientific Computing 36 （2014），no．5，S237－S266．

嗇 K．P．Bube and T．Nemeth，Fast line searches for the robust solution of linear systems in the hybrid ℓ_{1} / ℓ_{2} and huber norms， Geophysics 72 （2007），no．2，A13－A17．
围 Moshe Buchinsky，Changes in the u．s．wage structure 1963－1987：Application of quantile regression，Econometrica 62 （1994），no．2，405－58．
國 Wei Chu，S Sathiya Keerthi，and Chong Jin Ong，A unified loss function in bayesian framework for support vector regression， Epsilon 1 （2001），no．1．5， 2.
（ D．Clark，The mathematical structure of huber＇ĂŹs m－estimator，SIAM Journal on Scientific and Statistical Computing 6：1（1985），209－219．
Rudolf Dutter and Peter J Huber，Numerical Methods for the Nonlinear Robust Regression Problem，Journal of Statistical Computation and Simulation 13 （1981），79－113．

Christine De Mol，Ernesto De Vito，and Lorenzo Rosasco， Elastic－net regularization in learning theory，Journal of Complexity 25 （2009），no．2，201－230．
凅 D Donoho，Compressed sensing，IEEE Trans．on Information Theory 52 （2006），no．4，1289－1306．
围 Ofer Dekel，Shai Shalev－Shwartz，and Yoram Singer，Smooth epsiloon－insensitive regression by loss symmetrization，Journal of Machine Learning Research，2005，pp．711－741．
嗇 B．Efron，T．Hastie，L．Johnstone，and R．Tibshirani，Least angle regression，Annals of Statistics 32 （2004），407－499．
國 T．Evgeniou，M．Pontil，and T．Poggio，Regularization networks and support vector machines，Advances in Computational Mathematics 13 （2000），1－150．
嗇 David A Freedman，Statistical models：theory and practice， cambridge university press， 2009.

围 F．J．Herrmann，M．P．Friedlander，and O．Yilmaz，Fighting the curse of dimensionality：Compressive sensing in exploration seismology，Signal Processing Magazine，IEEE 29 （2012），no．3， 88－100．
围 F．J．Herrmann and G．Hennenfent，Non－parametric seismic data recovery with curvelet frames，Geophysical Journal International 173 （2008），no．1，233－248．
图 T．J．Hastie and R．J．Tibshirani，Generalized additive models， Monographs on Statistics and Applied Probability，vol．43，Chapman and Hall，London，UK， 1990.
围 T．J．Hastie，R．J．Tibshirani，and J．Friedman，The elements of statistical learning．data mining，inference and prediction， Springer，Canada， 2001.
Reter J Huber，Robust Statistics，John Wiley and Sons， 2004.
R．Koenker and G Bassett，Regression quantiles，Econometrica （1978），33－50．
R. Koenker and O. Geling, Reappraising medfly longevity: A quantile regression survival analysis, Journal of the American Statistical Association 96 (2001), 458âĂȘ468.
Roger Koenker and Kevin F. Hallock, Quantile regression, Journal of Economic Perspectives, American Economic Association (2001), 143-156.
R R. Koenker, Quantile regression, Cambridge University Press, 2005.
囯 Yuh-Jye Lee, Wen-Feng Hsieh, and Chien-Ming Huang, ϵ-ssvr: a smooth support vector machine for ϵ;-insensitive regression, Knowledge and Data Engineering, IEEE Transactions on 17 (2005), no. 5, 678-685.
Ring Li, Nan Lin, et al., The bayesian elastic net, Bayesian Analysis 5 (2010), no. 1, 151-170.
國 Yuh-Jye Lee and Olvi L Mangasarian, Ssvm: A smooth support vector machine for classification, Computational optimization and Applications 20 (2001), no. 1, 5-22.

或 W．Li and J．Swetits，The linear I1 estimator and the huber m－estimator，SIAM Journal on Optimization 8 （1998），no．2， 457－475．
围 J．Mairal，M．Elad，and G．Sapiro，Sparse representation for color image restoration，IEEE Transactions on Image Processing 17 （2008），no．1，53－69．
Ricardo A Maronna，Douglas Martin，and Yohai，Robust Statistics， Wiley Series in Probability and Statistics，Wiley， 2006.
四 H．Mansour，R．Saab，P．Nasiopoulos，and R．Ward，Color image desaturation using sparse reconstruction，Proc．of the IEEE International Conference on Acoustics，Speech，and Signal Processing（ICASSP），March 2010，pp．778－781．
围 Hassan Mansour，Haneet Wason，Tim T Y Lin，and Felix J Herrmann，Randomized marine acquisition with compressive sampling matrices，Geophysical Prospecting 60 （2012），no．4， 648－662．

R．Neelamani，C．E．Krohn，J．R．Krebs，J．K．Romberg， M．Deffenbaugh，and J．E．Anderson，Efficient seismic forward modeling using simultaneous random sources and sparsity， Geophysics 75 （2010），no．6，WB15－WB27．
围
M．Pontil and A．Verri，Properties of support vector machines， Neural Computation 10 （1998），955－974．
R R Tyrrell Rockafellar and Stanislav Uryasev，Optimization of conditional value－at－risk，Journal of risk 2 （2000），21－42．
目 J．－L Starck，M．Elad，and D．Donoho，Image decomposition via the combination of sparse representation and a variational approach，IEEE Transaction on Image Processing 14 （2005），no． 10.

B．Schölkopf and A．J．Smola，Learning with kernels：Support vector machines，regularization，optimization，and beyond， （Adaptive Computation and Machine Learning），MIT Press， 2001.
䡒 B．Schölkopf，A．J．Smola，R．C．Williamson，and P．L．Bartlett，New support vector algorithms，Neural Computation 12 （2000）， 1207－1245．

G．A．F．Seber and C．J．Wild，Nonlinear regression，Wiley Series in Probability and Statistics，Wiley， 2003.
嗇 Andrê Tikhonov，Numerical methods for the solution of ill－posed problems．
囯 V．Vapnik，Statistical learning theory，Wiley，New York，NY，USA， 1998.
（H．Zou and T．Hastie，Regularization and variable selection via the elastic net，Journal of the Royal Statistical Society，Series B 67 （2005），301－320．
囯 Hui Zou and Trevor Hastie，Regularization and variable selection via the elastic net，Journal of the Royal Statistical Society：Series B（Statistical Methodology） 67 （2005），no．2，301－320．
國 Hui Zou and Ming Yuan，Regularized simultaneous model selection in multiple quantiles regression，Computational Statistics \＆Data Analysis 52 （2008），no．12，5296－5304．

