Read Sections 1-7, 9, 10 in Chapter 1 of Munkres, and read Section 1.1 of Patty. The notion of equivalence relation in Section 3 will not be used until we discuss quotient spaces; I will discuss it in class at that time. We will not be discussing axiomatic characterizations of the integers or real numbers in this course — as in Section 4 — however, you will need a working knowledge of properties of these numbers as well as an understanding of completeness and induction. I may also at times use the Axiom of Choice, mostly without comment. At least informally, this axiom is eminently believable, so I wouldn’t worry too much about trying to understand the more formal treatment in Section 9 of Munkres. In Section 10, you should know the statement of the Well-ordering Theorem, but the following discussion of the set S_0 is optional. Munkres uses this set in some examples, but you will not be responsible for these.

Now do the following exercises. (Textbook exercises all refer to the Munkres text.)

§2: 4a–e; 5,
§7: 5a,d,f; 6

Extra Exercise 1: Consider the sets $\mathbb{R} \times [0,1]$ and $[0,1] \times \mathbb{R}$ with the dictionary order. Determine whether each one has the least upper bound property. You must, of course, justify your answers.

Extra Exercise 2: Prove that if X is uncountable and A is countable, then X has the same cardinality as $X - A$. (Hint: Find a countably infinite subset B in $X - A$ and use the fact that there is a bijection from $B \cup A$ to B.)

This assignment is due Friday, October 9.