Exercises from 1.1 of Patty:

3.
\[\|x + y\|^2 = (x + y) \cdot (x + y) = \|x\|^2 + 2x \cdot y + \|y\|^2 \]
\[\leq \|x\|^2 + 2|x| \cdot |y| + \|y\|^2\]
\[\leq \|x\|^2 + 2\|x\|\|y\| + \|y\|^2 \quad \text{(by Cauchy-Schwartz)} \]
\[= (\|x\| + \|y\|)^2. \]

This proves that \(\|x + y\| \leq \|x\| + \|y\| \).

12. Clearly \(d((x_1, y_1), (x_2, y_2)) = d((x_2, y_2), (x_1, y_1)) \) and \(d((x_1, y_1), (x_1, y_1)) = 0 \).
If \(d((x_1, y_1), (x_2, y_2)) = 0 \), then \(\max\{d_1(x_1, x_2), d_2(y_1, y_2)\} = 0 \). Since \(d_1(x_1, x_2) \) and \(d_2(y_1, y_2) \) are both nonnegative, we must have \(d_1(x_1, x_2) = d_2(y_1, y_2) \).
But this implies that \(x_1 = x_2 \) and \(y_1 = y_2 \). Finally, we verify the triangle inequality. Indeed,
\[d_1(x_1, x_3) \leq d_1(x_1, x_2) + d_1(x_2, x_3) \leq d((x_1, y_1), (x_2, y_2)) + d((x_2, y_2), (x_3, y_3)) \]
\[d_2(y_1, y_3) \leq d_2(y_1, y_2) + d_2(y_2, y_3) \leq d((x_1, y_1), (x_2, y_2)) + d((x_2, y_2), (x_3, y_3)), \]

so
\[d((x_1, y_1), (x_3, y_3)) = \max\{d_1(x_1, x_3), d_2(y_1, y_3)\} \leq d((x_1, y_1), (x_2, y_2)) + d((x_2, y_2), (x_3, y_3)). \]

13. \(d \) is not a metric on \(X \times Y \) if \(Y \) (or \(X \)) has at least two elements and the other set is nonempty. For then \(d((x, y_1), (x, y_2)) = 0 \) but \((x, y_1) \neq (x, y_2) \) for \(y_1 \neq y_2 \).

19. Let \(x_0 \in X \) and \(\varepsilon > 0 \). Since
\[d(x_0, a) \leq d(x_0, x) + d(x, a) \]
for all \(x \in X \), \(a \in A \), it follows that
\[f(x_0) = \inf\{ d(x_0, a) : a \in A \} \leq d(x_0, x) + \inf\{ d(x, a) : a \in A \} \]
\[= d(x_0, x) + f(x). \]

Interchanging \(x \) and \(x_0 \) yields
\[f(x) \leq d(x, x_0) + f(x_0); \]

hence
\[|f(x) - f(x_0)| \leq d(x, x_0). \]

Therefore, \(d(x, x_0) < \varepsilon \Rightarrow |f(x) - f(x_0)| < \varepsilon \), so \(f \) is continuous.
22. Let \(a \in X_1 \) and \(\epsilon > 0 \). We need to find a \(\delta > 0 \) such that
\[
d_1(x_1, a) < \delta \Rightarrow d_3((g \circ f)(x_1), (g \circ f)(a)) < \epsilon.
\]
g is continuous at \(f(a) \), so we may choose \(\delta_1 > 0 \) such that
\[
d_2(x_2, f(a)) < \delta_1 \Rightarrow d_3(g(x_2), g(f(a))) < \epsilon.
\]
Since \(f \) is continuous at \(a \), there exists \(\delta > 0 \) such that
\[
d_1(x_1, a) < \delta \Rightarrow d_2(f(x_1), f(a)) < \delta_1.
\]
But from above,
\[
d_2(f(x_1), f(a)) < \delta_1 \Rightarrow d_3(g(f(x_1)), g(f(a))) < \epsilon,
\]
so our chosen \(\delta \) satisfies the desired implication.

Extra Exercise 1: Let \(T_\rho \) be the topology induced by \(\rho \) and \(T_d \) the topology induced by \(d \). We will show that the inequality
\[
ad(x, y) \leq \rho(x, y)
\]
implies that \(T_\rho \) is finer than \(T_d \). Since we also have
\[
b^{-1} \rho(x, y) \leq d(x, y),
\]
we then have that \(T_d \) is finer than \(T_\rho \); hence \(T_d = T_\rho \).

Suppose then that \(U \in T_d \) and let \(x_0 \in U \). Choose \(\epsilon > 0 \) such that \(B_d(x_0, \epsilon) \subset U \).
If \(\rho(x, x_0) < \epsilon a \), then \(d(x, x_0) < \epsilon \), so \(x \in U \). This proves that \(B_\rho(x, \epsilon a) \subset U \), and hence, since \(x_0 \in U \) was arbitrary, that \(U \) is in \(T_\rho \).

Now let \(d \) denote the standard metric and let \(\rho \) denote the square metric on \(\mathbb{R}^n \).
If \(x = (x_1, \ldots, x_n) \) and \(y = (y_1, \ldots, y_n) \), then
\[
|x_i - y_i| = \sqrt{|x_i - y_i|^2} \leq \|x - y\|
\]
and thus \(\rho(x, y) \leq d(x, y) \). On the other hand,
\[
d(x, y) = \|x - y\| = \sqrt{(x_1 - y_1)^2 + \cdots + (x_n - y_n)^2}
\]
and \((x_i - y_i)^2 \leq \rho(x, y)^2 \) for all \(i \); hence
\[
d(x, y) \leq \sqrt{n\rho(x, y)^2} = \sqrt{n} \rho(x, y).
\]
By what we did above, these two inequalities imply that \(d \) and \(\rho \) induce the same topology.

Extra Exercise 2: Suppose the topology on \(X \) is induced by a metric \(d \), and that \(x_1, x_2 \in X \) with \(x_1 \neq x_2 \). Then let \(r = d(x_1, x_2) > 0 \). \(B_d(x_1, r) \) is an open set which contains \(x_1 \) but not \(x_2 \); thus there is an open set which is neither the empty set nor is all of \(X \). Therefore, \(X \) does not have the trivial topology.