Exercises from Munkres:

§13.1. We show that \(\bigcup_{U \in A} U = A \). Since the union of a collection of open sets is open, this proves that \(A \) is open. To prove that \(\bigcup_{U \in A} U = A \), first observe that \(\bigcup_{U \in A} U \subset A \), since each \(U \) in the union is a subset of \(A \). Now suppose \(x \in A \). Then, by assumption, there exists \(U \subset A \) with \(x \in U \). Hence \(x \in \bigcup_{U \in A} U \), so, since \(x \) was arbitrary, \(A \subset \bigcup_{U \in A} U \). Therefore, \(A = \bigcup_{U \in A} U \), completing the proof.

§13.3. First observe that \(\emptyset \in \mathcal{T}_c \), since \(X - \emptyset = X \), and that \(X \in \mathcal{T}_c \), since \(X - X = \emptyset \) and \(\emptyset \) is countable. Next suppose that \(\{U_\alpha\} \subset \mathcal{T}_c \). If every \(U_\alpha \neq \emptyset \), then \(\bigcup_\alpha U_\alpha = \emptyset \in \mathcal{T}_c \). If some \(U_\beta \neq \emptyset \), then \(X - U_\beta \) is countable and

\[
X - \bigcup_\alpha U_\alpha = \bigcap_\alpha (X - U_\alpha) \subset X - U_\beta.
\]

Hence \(X - \bigcup_\alpha U_\alpha \) is countable, so \(\bigcup_\alpha U_\alpha \in \mathcal{T}_c \). Finally, suppose that \(U_1 \) and \(U_2 \) are in \(\mathcal{T}_c \). If either \(U_1 \) or \(U_2 \) is empty, then \(U_1 \cap U_2 = \emptyset \in \mathcal{T}_c \). Otherwise, \(X - U_1 \) and \(X - U_2 \) are both countable, so

\[
X - (U_1 \cap U_2) = (X - U_1) \cup (X - U_2)
\]

is countable and thus \(U_1 \cap U_2 \in \mathcal{T}_c \). These observations imply that \(\mathcal{T}_c \) is a topology on \(X \).

However, \(\mathcal{T}_\infty \) is not necessarily a topology on \(X \). For example, let \(X = \mathbb{N} \), and let \(U \) be the set of even numbers and \(V \) be the set of odd numbers greater than 1. Then \(U \) and \(V \) are both in \(\mathcal{T}_\infty \), but \(X - (U \cup V) = \{1\} \), so \(U \cup V \notin \mathcal{T}_\infty \). In fact, \(\mathcal{T}_\infty \) is never a topology if \(X \) is infinite.

§13.8. a. Each element of \(\mathcal{B} \) is open in the standard topology so it suffices to show that if \(x \in U \) and \(U \) is open in the standard topology, then there exists \(B \in \mathcal{B} \) with \(x \in B \subset U \). But, since \(U \) is open, there exists \(\epsilon > 0 \) such that \((x - \epsilon, x + \epsilon) \subset U \). Now choose \(a \in \mathbb{Q} \) with \(x - \epsilon < a < x \) and \(b \in \mathbb{Q} \) with \(x < b < x + \epsilon \); then \(x \in (a, b) \subset U \) and \((a, b) \in \mathcal{B} \).

b. That \(\mathcal{C} \) generates a topology \(\mathcal{T} \) follows from the same argument that we used to construct the lower limit topology \(\mathcal{T}' \) on \(\mathbb{R} \). Clearly \(\mathcal{T} \subset \mathcal{T}' \). However, I claim that if \(u \) is irrational and \(u < v \), then \([u, v) \notin \mathcal{T} \). Since \([u, v) \in \mathcal{T}' \), this proves that \(\mathcal{T} \neq \mathcal{T}' \). To prove the claim, observe that if \([u, v) \in \mathcal{T} \), then it would have to be the union of elements of \(\mathcal{C} \). In particular, there would have to be \(a, b \in \mathbb{Q} \) such that \(u \in [a, b) \subset [u, v) \). But \(u \) is irrational, so \(u \in [a, b) \Rightarrow u > a \), whence \([a, b) \notin [u, v) \). Therefore, \([u, v) \notin \mathcal{T} \).
§16.3. \(A = (-1, -\frac{1}{2}) \cup (\frac{1}{2}, 1) \) is open in \(\mathbb{R} \) and hence open in \(Y \).
\(B = [-1, -\frac{1}{2}) \cup (\frac{1}{2}, 1] \) is not open in \(\mathbb{R} \) but is open in \(Y \) since \(B = Y \cap (-\infty, -\frac{1}{2}) \cup \left(\frac{1}{2}, \infty\right) \) and \((-\infty, -\frac{1}{2}) \cup \left(\frac{1}{2}, \infty\right) \) is open in \(\mathbb{R} \).
\(C = (-1, -\frac{1}{2}] \cup [\frac{1}{2}, 1) \) is not open in \(\mathbb{R} \). It is also not open in \(Y \) because \(Y \) is a
metric space and no ball in \(Y \) with center \(\frac{1}{2} \) and positive radius is contained in \(C \).
\(D = [-1, -\frac{1}{2}] \cup [\frac{1}{2}, 1] \) is not open in \(\mathbb{R} \). It is also not open in \(Y \) for the same reason as above.

\(E = (-1, 0) \cup [(0, 1) - \{ \frac{1}{n} : n \in \mathbb{Z}_+ \}] \). \((0, 1) - \{ \frac{1}{n} : n \in \mathbb{Z}_+ \} \) is open in \(\mathbb{R} \)
because if \(x \in (0, 1) - \{ \frac{1}{n} : n \in \mathbb{Z}_+ \} \), then \(\frac{1}{m+1} < x < \frac{1}{m} \) for some \(m \in \mathbb{Z}_+ \).
We can then choose an \(\epsilon' > 0 \) such that \(\frac{1}{m+1} < x - \epsilon < x + \epsilon < \frac{1}{m} \), and hence \((x-\epsilon, x+\epsilon) \subset (0,1) - \{ \frac{1}{n} : n \in \mathbb{Z}_+ \} \). Since \(E \) is open in \(\mathbb{R} \), it’s open in \(Y \).

§16.9. Let \(T \) denote the dictionary order topology on \(\mathbb{R} \times \mathbb{R} \); it has basis
\[\mathcal{B} = \{ (a \times b, c \times d) : a < c, \text{ or } a = c \text{ and } b < d \} \]
(see §14, Example 2). Let \(T' \) denote the topology on \(\mathbb{R}_d \times \mathbb{R} \); it has basis
\[\mathcal{B}' = \{ \{x\} \times (c, d) : c < d \} \].
Suppose \(u \times v \in (a \times b, c \times d) \), where \((a \times b, c \times d) \in \mathcal{B} \). We show that there is a
\(B' \in \mathcal{B}' \) with \(u \times v \in B' \subset (a \times b, c \times d) \).

There are several cases to consider.

Case 1. \(a = c \). Then \((a \times b, c \times d) = a \times (b, d) \) which is already in \(\mathcal{B}' \).

Case 2. \(u = a \) and \(a < c \). Then
\[u \times v \in \{a\} \times (b, v+1) \subset (a \times b, c \times d) \].

Case 3. \(a < u < c \). Then
\[u \times v \in \{u\} \times (v-1, v+1) \subset (a \times b, c \times d) \].

Case 4. \(u = c \) and \(a < c \). Then
\[u \times v \in \{c\} \times (v-1, d) \subset (a \times b, c \times d) \].

In any event, such a \(B' \) can be found; this proves that \(T \subset T' \) (Lemma 13.3).
On the other hand, any element of \(\mathcal{B}' \) is an element of \(\mathcal{B} \); hence \(T' \subset T \). Putting
these together gives \(T = T' \). Finally, note that \(T' \) is finer than the standard topology on \(\mathbb{R} \times \mathbb{R} \), since the
standard topology has \(\{ (a, b) \times (c, d) : a < b, c < d \} \) as a basis, and
\[(a, b) \times (c, d) = \bigcup_{x \in (a, b)} \{x\} \times (c, d) \]
is open in \(T' \). But \(T' \) is not the same as the standard topology; for example, \(\{x\} \times (a, b) \) with \(a < b \) is in \(T' \) but is not open in the standard topology.
§17.6. a. If $A \subseteq B$, then $A \subseteq \overline{B}$. Since \overline{A} is the intersection of all closed subsets containing A, and \overline{B} is closed, it therefore follows that $\overline{A} \subseteq \overline{B}$.

b. Since $A \subseteq A \cup B$, we have $\overline{A} \subseteq \overline{A \cup B}$. Similarly, $\overline{B} \subseteq \overline{A \cup B}$, so $\overline{A} \cup \overline{B} \subseteq \overline{A \cup B}$. Now $\overline{A} \cup \overline{B}$ is a closed set containing $A \cup B$, and $\overline{A \cup B}$ is the intersection of all closed subsets containing $A \cup B$; hence $\overline{A} \cup \overline{B} \subseteq \overline{A \cup B}$. Therefore, $\overline{A} \cup \overline{B} = \overline{A \cup B}$.

c. Since $A_\beta \subseteq \bigcup A_\alpha$, we have $\overline{A_\beta} \subseteq \bigcup \overline{A_\alpha}$, and therefore, $\bigcup \overline{A_\alpha} \subseteq (\bigcup \overline{A_\alpha})$. Equality does not hold in general, however. For example, let $X = \mathbb{R}$ with the standard topology, and let

$$A_n = (-\infty, -\frac{1}{n}] \cup [\frac{1}{n}, \infty)$$

for $n \in \mathbb{Z}_+$. Then A_n is closed, so

$$\bigcup \overline{A_n} = \bigcup A_n = \mathbb{R} - \{0\},$$

but

$$\overline{\bigcup A_n} = \mathbb{R} - \{0\} = \mathbb{R}.$$

§17.13. First suppose that X is Hausdorff. We will show that if $(u, v) \notin \Delta$, then $(u, v) \notin \overline{\Delta}$. Indeed, $u \neq v$, so there exist neighborhoods U of u and V of v in X such that $U \cap V = \emptyset$. This means that $(U \times V) \cap \Delta = \emptyset$. Since $U \times V$ is open in $X \times X$, it follows that $(u, v) \notin \overline{\Delta}$.

Conversely, suppose that Δ is closed in $X \times X$. Then, if $u \neq v$, there exists a neighborhood W of (u, v) in $X \times X$ such that $W \cap \Delta = \emptyset$. But $\{U \times V : U, V \text{ open in } X\}$ is a basis for the topology on $X \times X$; hence there exist open sets U and V such that $(u, v) \in U \times V \subseteq W$. This means that $u \in U$, $v \in V$, and, since $U \times V \cap \Delta = \emptyset$, that $U \cap V = \emptyset$. Therefore, X is Hausdorff.

Extra Exercise: a. Given any $\epsilon > 0$, there exists $n \in \mathbb{Z}_+$ with $\frac{1}{n} < \epsilon$. This implies that $(-\epsilon, \epsilon) \cap K \neq \emptyset$. Since any neighborhood of 0 contains $(-\epsilon, \epsilon)$ for some $\epsilon > 0$, it therefore follows that $0 \in K$. On the other hand, if $x < 0$, $(-\infty, 0)$ is a neighborhood of x whose intersection with K is empty. Thus $x \notin K$. If $x > 0$, but $x \notin K$, then there exists an integer $m \geq 0$ such that $\frac{1}{m+1} < x < \frac{1}{m}$, where we set $\frac{1}{0} = \infty$. But $(\frac{1}{m+1}, \frac{1}{m}) \cap K = \emptyset$, so $x \notin K$. From all this we conclude that $K = K \cup \{0\}$.

b. Let $x \in \mathbb{R}$, and let U be any neighborhood of x. Then $\mathbb{R} - U$ is finite, so U contains all but a finite number of elements of \mathbb{R}. But K is infinite; therefore $U \cap K \neq \emptyset$. This implies that $x \in K$, and, since x was arbitrary, that $K = \mathbb{R}$.

c. By an argument similar to what we did in class, the upper limit topology is finer than the standard topology. Hence the closure \overline{K} of K in the upper limit topology is a subset of the closure of K in the standard topology. By part a), this implies that $\overline{K} \subseteq K \cup \{0\}$. But $0 \notin \overline{K}$, since $(-1, 0]$ is a neighborhood of 0 with $(-1, 0] \cap K = \emptyset$. Therefore, $\overline{K} = K$.

3