2-2.17. A set C in \mathbb{R}^n is a regular curve if for each $p \in C$, there exists an open set I in \mathbb{R}, an open neighborhood V of p in \mathbb{R}^n, and a homeomorphism $x : I \to V \cap C$ such that

i. $x : I \to \mathbb{R}^n$ is smooth

ii. $x'(t) \neq \vec{0}$ for each $t \in I$. (This is the same as saying that $(d\mathbf{x})(t)$ is one-to-one.)

a. Let $C = f^{-1}\{a\}$, where a is a regular value of f, and suppose $p = (x_0, y_0) \in C$. Assume that $\frac{\partial f}{\partial y}(x_0, y_0) \neq 0$. (The case $\frac{\partial f}{\partial x}(x_0, y_0)$ is similar.) Consider the function $F : U \to \mathbb{R}^2$ defined by

$$F(x, y) = (x, f(x, y)).$$

Then

$$\det(dF(p)) = \begin{vmatrix} \frac{\partial f}{\partial x}(p) & \frac{\partial f}{\partial y}(p) \\ 0 & 1 \end{vmatrix} = \frac{\partial f}{\partial y}(p) \neq 0,$$

so $dF(p)$ is invertible. By the inverse function theorem, there then exists a neighborhood V of p in \mathbb{R}^2 such that $W = F(V)$ is open and $F : V \to W$ is a diffeomorphism. Observe that $F^{-1} : W \cap \{u, v) : v = a\} \to V \cap C$ is a homeomorphism,
and let \(I = \{ u \mid (u, a) \in W \} \). Then \(j : I \rightarrow W \cap \{ (u, v) : v = a \} \) given by \(j(u) = (u, a) \) is a homeomorphism, so

\[F^{-1} j : I \rightarrow W \cap C \]

is a homeomorphism as well. Since \(F^{-1} \) and \(j \) are both differentiable, so is \(F^{-1} j \). Finally,

\[d(F^{-1} j)(t) = dF^{-1}(j(t)) \circ dj(t) \]

and both \(dF^{-1}(j(t)) \) and \(dj(t) \) are one-to-one. This proves that \(d(F^{-1} j)(t) \) is one-to-one for each \(t \in \mathbb{I} \) and therefore \(F^{-1} j \) is a parametrization. (Observe here that \(F^{-1}(u, v) = (u, g(u, v)) \), where \(g : W \rightarrow \mathbb{R} \) is smooth. Then

\[(F^{-1} j)(t) = (t, g(t, a)), \]

so that \(W \cap C \) is the graph of the function whose value at \(t \) is \(g(t, a) \).)

... \(f^{-1} \{ a \} \) need not be connected. For example, let \(f(x) = x^2 \). Then \(1 \) is a regular value, but \(f^{-1} \{ 1 \} \) consists of the lines \(x = 1 \) and \(x = -1 \) in \(\mathbb{R}^2 \).

b. Let \(a = (a_1, a_2) \) be a regular value of \(F_1 \) and let \(C = F^{-1} \{ a \} \subset \mathbb{R}^3 \). Suppose \(p = (x_0, y_0, z_0) \in C \).

Then

\[
\begin{bmatrix}
\frac{\partial F_1}{\partial x}(p) & \frac{\partial F_1}{\partial y}(p) & \frac{\partial F_1}{\partial z}(p) \\
\frac{\partial F_2}{\partial x}(p) & \frac{\partial F_2}{\partial y}(p) & \frac{\partial F_2}{\partial z}(p)
\end{bmatrix}
\]
is onto. This means that at least one of the Jacobian determinants

\[
\begin{align*}
\frac{\partial (F_1, F_2)}{\partial (x, y)}, & \quad \frac{\partial (F_1, F_2)}{\partial (x, z)}, & \quad \frac{\partial (F_1, F_2)}{\partial (y, z)}
\end{align*}
\]

must be nonzero at \(p \). Let us suppose that \(\frac{\partial (F_1, F_2)}{\partial (y, z)} (p) \neq 0 \); the other cases are similar.

Consider the function \(G : U \rightarrow \mathbb{R}^3 \) defined by

\[
G(x, y, z) = (x, F(x, y, z)).
\]

Then

\[
\det \left(dG(p) \right) = \begin{vmatrix}
1 & 0 & 0 \\
\frac{\partial F_1}{\partial x}(p) & \frac{\partial F_1}{\partial y}(p) & \frac{\partial F_1}{\partial z}(p) \\
\frac{\partial F_2}{\partial x}(p) & \frac{\partial F_2}{\partial y}(p) & \frac{\partial F_2}{\partial z}(p)
\end{vmatrix} = \frac{\partial (F_1, F_2)}{\partial (y, z)} (p) \neq 0;
\]

hence, by the inverse function theorem, there exists a neighborhood \(V \) of \(p \) in \(\mathbb{R}^3 \) such that \(W = G(V) \) is open in \(\mathbb{R}^3 \) and \(G : V \rightarrow W \) is a diffeomorphism. As before,

\[
G^{-1} : W \cap \{(u, v, w) : (v, w) = (a_1, a_2)\} \rightarrow V \cap C
\]

is a homeomorphism, and let \(I = \{u \mid (u, a_1, a_2) \in W\} \).
Then \(j: I \rightarrow W \cap \{(u,v,w): (v,w)=(a_1,a_2)\} \) given by \(j(u) = (u,a_1,a_2) \) is a homeomorphism, so

\[G^{-1} \circ j: I \rightarrow V \cap C \]

is a homeomorphism as well. The same argument as in a) shows that \(G^{-1} \circ j \) is differentiable and that \(d(G^{-1} \circ j)(t) \) is one-to-one for each \(t \in I \); this then proves that \(G^{-1} \circ j \) is a parametrization.

Finally, note that \(C = S_1 \cap S_2 \), where \(S_1 = F_1^{-1}\{a_1\} \) and \(S_2 = F_2^{-1}\{a_2\} \). However, it need not be the case that \(a_1 \) is a regular value of \(F_1 \) and \(a_2 \) is a regular value of \(a_2 \), so we cannot conclude that \(S_1 \) and \(S_2 \) are always regular surfaces.

c. We first prove a preliminary result.

Lemma: Suppose \(C \) is a regular surface in \(\mathbb{R}^2 \) and \(p \in C \). Then there exists a neighborhood \(V \) of \(p \) in \(C \) such that \(V \) is the graph of a differentiable function of the form \(y = f(x) \) or \(x = g(y) \).

Proof: Let \(x: U_0 \rightarrow V_0 \) be a parametrization, with \(U_0 \) open in \(\mathbb{R} \), \(V_0 \) open in \(C \), \(p \in V_0 \), and \(x(q) = p \). Write \(x(t) = (x(t), y(t)) \). Since \(\frac{dx}{dt}(q) \neq 0 \), we
must have either \(x'(q) \neq 0 \) or \(y'(q) \neq 0 \). Suppose \(x'(q) \neq 0 \); the other case is similar. Then there exists a neighborhood \(U \) of \(q \) such that \(W = x(U) \) is open and \(x: U \to W \) is a diffeomorphism. Let \(V = x(U) \).

Since \(x \) is a homeomorphism and \(V_0 \) is open in \(C \), it follows that \(V \) is a neighborhood of \(p \) in \(C \). Moreover, \(x = \pi \circ x \), so \(\pi: V \to W \) is also a homeomorphism, where \(\pi \) is the projection onto the first coordinate. Therefore, given \(t \in W \), there exists a unique \(s \in \mathbb{R} \) such that \((t, s) \in V\). Define \(f: W \to \mathbb{R} \) by \(f(t) = s \). Then \(V \) is the graph of \(f \), and \(f \) is smooth since \(f = \pi_2 \circ x \circ x^{-1} \), where \(\pi_2 \) is the projection onto the second coordinate. This completes the proof.

Now let \(C = \{ (x, y) \in \mathbb{R}^2 : x^2 = y^3 \} \). (See Figure 1-2 on p. 3 of do Carmo for a picture.) I claim that there is no neighborhood \(V \) of \((0,0)\) in \(C \) which is the graph of a differentiable function \(y = f(x) \) or \(x = g(y) \). Certainly, we cannot have \(x = g(y) \), since both \((y^{3/2}, y)\) and \((-y^{3/2}, y)\) lie in \(V \) for \(y \) a sufficiently small positive number. If \(V \) is the graph of a function \(y = f(x) \), we must have \(f(x) = x^{2/3} \). But \(f \) is not differentiable at \(0 \).
2-3.2. \(\pi \) is a map between surfaces. Using the definition of differentiability for such maps – and using the fact that \(\mathbb{R}^2 \) is parametrized by the map sending \((u,v)\) to \((u,v,0)\) – it suffices to show that \(\pi \circ x : U \to \mathbb{R}^2 \) is differentiable, where \(x : U \to S \) is a local parametrization of \(S \) and \(\pi \) is here the projection onto the first two coordinates. But
\[
(\pi \circ x)(u,v) = (x(u,v), y(u,v)),
\]
where \(x(u,v) = (x(u,v), y(u,v), z(u,v)) \). Since \(x(u,v) \) and \(y(u,v) \) are differentiable, so is \(\pi \circ x \).

14. Certainly, if \(A \) is open in \(S \), then \(A \) is a regular surface.

Conversely, suppose \(A \subset S \) and \(A \) is a regular surface. To show that \(A \) is open in \(S \), it suffices to show that whenever \(p \in A \), there exists a neighborhood of \(p \) in \(S \) completely contained in \(A \). To do this, start by taking \(x : U \to N \) to be a parametrization of \(A \) in a neighborhood of \(p \) and \(y : U' \to N' \) to be a parametrization of \(S \) in a neighborhood of \(p \). By shrinking \(U' \) if necessary, we may, as in the proof of Proposition 1 (pp.70-1), extend \(y \) to a diffeomorphism
$\gamma: V \to W$, where V and W are open in \mathbb{R}^3. (Here we regard $\mathbb{R}^2 \subset \mathbb{R}^3$ in the usual way.) Then, by shrinking U if necessary, we get that

$\gamma^{-1} \circ \gamma = \gamma^{-1} \circ \gamma : U \to \mathbb{R}^2$

is differentiable. Moreover, for $q \in U$

$$d(\gamma^{-1} \circ \gamma)(q) = (d \gamma^{-1})(x(q)) \cdot dx(q)$$

is the composition of two one-to-one linear transformations and so is one-to-one. This implies that $d(\gamma^{-1} \circ \gamma)(q)$ is invertible for each $q \in U$, so by the inverse function theorem, $(\gamma^{-1} \circ \gamma)(U)$ is open in \mathbb{R}^2. Since γ^{-1} is a homeomorphism from an open subset of S to an open subset of \mathbb{R}^2, it follows that $N = x(U)$ is open in S. This completes the proof.