do Carmo

3. Let $\mathbf{x} : \mathbb{R}^2 \rightarrow \mathbb{S}^2 \cap \{N\}$ be given by

$$
\mathbf{x}(u,v) = \left(\frac{4u}{u^2+v^2+4}, \frac{4v}{u^2+v^2+4}, \frac{2(u^2+v^2)}{u^2+v^2+4} \right),
$$

where here \mathbb{S}^2 is the sphere of radius 1 with center at $(0,0,1)$ and $N=(0,0,2)$. (Of course, \mathbf{x} is just π^{-1} of exercise 16 in 2-2.) Now

$$
\begin{align*}
\mathbf{x}_u(u,v) &= \left(\frac{4(v^2-u^2+y)}{(u^2+v^2+y)^2}, -\frac{8uv}{(u^2+v^2+y)^2}, \frac{16u}{(u^2+v^2+y)^2} \right) \\
\mathbf{x}_v(u,v) &= \left(-\frac{8uv}{(u^2+v^2+y)^2}, \frac{4(u^2-v^2+y)}{(u^2+v^2+y)^2}, \frac{16v}{(u^2+v^2+y)^2} \right)
\end{align*}
$$

If $(u_0,v_0) \in \mathbb{R}^2$,

$$
\begin{align*}
\mathbf{F}(u_0,v_0) &= \langle \mathbf{x}_u, \mathbf{x}_v \rangle_{\mathbb{S}^2}(u_0,v_0) = 0 \\
\mathbf{E}(u_0,v_0) &= \langle \mathbf{x}_u, \mathbf{x}_u \rangle_{\mathbb{S}^2}(u_0,v_0) = \frac{16}{(u_0^2+v_0^2+y)^2} \\
\mathbf{G}(u_0,v_0) &= \langle \mathbf{x}_v, \mathbf{x}_v \rangle_{\mathbb{S}^2}(u_0,v_0) = \frac{16}{(u_0^2+v_0^2+y)^2}
\end{align*}
$$

Therefore, if $p = \mathbf{x}(u_0,v_0)$, we have

$$
I_p(a \mathbf{x}_u + b \mathbf{x}_v) = \frac{16}{(u_0^2+v_0^2+y)^2} (a^2 + b^2).
$$
Il. a. Parametrize C by arc length, as in Example 4 on p. 76 of de Carmo, we let

$$x = f(v), \quad z = g(v), \quad 0 < v < l, \quad f(v) > 0$$

be this parametrization. We then have the parametrization $\mathbf{x}: U \to S - C$ given by

$$\mathbf{x}(u,v) = (f(u)\cos u, \quad f(u)\sin u, \quad g(u)),$$

where $U = \{(u,v) \in \mathbb{R}^2 : 0 < u < 2\pi, \quad 0 < v < l\}$. Then the area of S is given by

$$A(S) = \int_0^l \int_0^{2\pi} |\mathbf{x}_u \times \mathbf{x}_v| \, du \, dv.$$

(Actually, this expression is not quite justified (why?), however, you need not prove a proof.)

Now

$$\mathbf{x}_u = (-f(u)\sin u, \quad f(u)\cos u, \quad 0)$$
$$\mathbf{x}_v = (f'(u)\cos u, \quad f'(u)\sin u, \quad g'(u)),$$

so

$$|\mathbf{x}_u \times \mathbf{x}_v| = \left| \begin{vmatrix} y' & z' & -f(u) \sin u \\ z' & x' & -f(u) \cos u \\ 0 & f(u) & f'(u) \end{vmatrix} \right|$$

$$= f(u) \sqrt{g''(u)^2 + f'(u)^2} = f(u) = \rho(u)$$

Hence,

$$A(S) = \int_0^l \int_0^{2\pi} \rho(u) \, du \, dv = 2\pi \int_0^l \rho(u) \, du.$$
b. Let \(C \) be the pictured circle, the surface obtained by rotating it around the z-axis is a torus \(T \). If we parametrize \(C \) by starting at \(x = a \pi r \) and proceeding counterclockwise, we obtain
\[
\rho(s) = a + r \cos \left(\frac{s}{r} \right) \quad 0 \leq s \leq 2\pi r
\]
Then by part a,
\[
A(T) = 2\pi \int_0^{2\pi r} a + r \cos \left(\frac{s}{r} \right) ds = 4\pi^2 ra.
\]

14. a. We have
\[
\langle \nabla f(p), \frac{\partial}{\partial u} \rangle = d_f (\frac{\partial}{\partial u}) = \frac{\partial f}{\partial u} \equiv f_u.
\]
\[
\langle \nabla f(p), \frac{\partial}{\partial v} \rangle = d_f (\frac{\partial}{\partial v}) = \frac{\partial f}{\partial v} \equiv f_v.
\]
Write \(\nabla f(p) = ax_u + by_v \), \(a, b \in \mathbb{R} \). (Of course, \(a \) and \(b \) depend upon \(p \).) Then the above formulas yield
\[
aE + bF = f_u
\]
\[
aF + bG = f_v
\]
Solve for \(a \) and \(b \) to get
\[
a = \frac{f_u G - f_v F}{EG - F^2}
\]
Note that since \(x_u \) and \(x_v \) are linearly independent, \(z_u \wedge z_v \neq 0 \). Thus \(\text{det} F = |z_u \wedge z_v|^2 > 0 \).

b. By the Cauchy-Schwarz inequality,

\[
|f_v(v)| \leq \frac{\langle \text{grad} f(p), v \rangle}{|\text{grad} f(p)|} \leq |\text{grad} f(p)|
\]

whenever \(|v| = 1 \). If \(v = \frac{\text{grad} f(p)}{|\text{grad} f(p)|} \), this maximum is attained. Since equality holds in the Cauchy-Schwarz inequality only when \(v \) and \(\text{grad} f(p) \) are collinear, the maximum of \(f_v(v) \) occurs only when \(v = \frac{\text{grad} f(p)}{|\text{grad} f(p)|} \).

c. Let \(c \in \mathbb{R} \), and let \(C = f^{-1}(c) \subseteq S \). If \((\text{grad} f)(p) \neq 0 \) for any \(p \in C \), then \(df(p) : T_p S \rightarrow \mathbb{R} \) is onto and thus \(c \) is a regular value. It follows from exercise 28 of 2-4 that \(C \) is a regular curve.

Suppose now that \(\alpha : I \rightarrow C \) is a parametrized curve with \(\alpha(0) = p \). Then \((f \circ \alpha)(t) = c \forall t \in I \); this implies that

\[
0 = (f \circ \alpha)'(c) = (df)(p)(\alpha'(0)) = \langle \text{grad} f(p), \alpha'(0) \rangle_p.
\]
Since any vector in T_pC is of the form $u'(0)$ for some such u, it follows that $\text{grad}f(p)$ is normal to C at p.

2-6

1. We prove the contrapositive. Suppose S is an orientable regular surface covered by connected coordinate neighborhoods U_1 and U_2. Choose an orientation on S, and let $\tilde{x}_1: U_1 \rightarrow V_1$ and $\tilde{x}_2: U_2 \rightarrow V_2$ be parametrizations. Then $(d\tilde{x}_i)(q): (\mathbb{R}^2 \rightarrow T_pS)$ is either orientation preserving for all $q \in U_i$ or orientation reversing for all $q \in U_i$, $p = \tilde{x}_i(q)$. Let $\tau(\tilde{x}_i) = 1$ if $(d\tilde{x}_i)(q)$ is orientation preserving, and $\tau(\tilde{x}_i) = -1$ if $(d\tilde{x}_i)(q)$ is orientation reversing. Then the Jacobian of $\tilde{x}_2^{-1} \circ \tilde{x}_1$ at $\tilde{x}_1(p)$ is positive if $\tau(\tilde{x}_1)\tau(\tilde{x}_2) = 1$ and negative if $\tau(\tilde{x}_1)\tau(\tilde{x}_2) = -1$. Thus the sign of the Jacobian of $\tilde{x}_2^{-1} \circ \tilde{x}_1$ must be unchanging on $\tilde{x}_1(U_1 \cap U_2)$.

2. We have $\text{deg}_p: T_pS_1 \rightarrow T_pS_2$ is an isomorphism since p is a local diffeomorphism at p. Choose the orientation on T_pS, such that deg_p is orientation preserving. (We assume that we have chosen an
orientation on \(S_2 \). Now choose a coordinate neighborhood \(V \) of \(p \) such that \(\varphi : V \to \varphi(V) \) is a diffeomorphism onto an open set in \(S_2 \). Let \(\pi : U \to V \) be a parametrization. Then \(\varphi \circ \pi : U \to \varphi(V) \) is a parametrization and therefore \(d(\varphi \circ \pi)(q) \) is orientation preserving for all \(q \in U \) or is orientation reversing for all \(q \in U \). Since \(d(\varphi \circ \pi) = dp \circ d\pi \) and we have defined our orientation on each tangent plane of \(S \), so that \(dp \) is orientation preserving, it follows that \((d\pi)(q) \) is either orientation preserving for all \(q \in U \) or is orientation reversing for all \(q \in U \). Since \(p \in S \), is arbitrary, this shows that \(S_2 \) is orientable.

4. Let \(S \) be a regular, connected, orientable surface, and let \(N : S \to \mathbb{R}^2 \) be an orientation. If \(M : S \to \mathbb{R}^3 \) is another orientation, we have that \(M(p) = \pm N(p) \) for any \(p \in S \). Consider the set
\[
C = \{ p \in S : M(p) = \pm N(p) \}.
\]
I claim that \(C \) is both open and closed in \(S \). Assuming this, it follows by the connectivity of \(S \) that either \(C = \emptyset \) or \(C = S \). If \(C = S \), we have that \(M = N \); if \(C = \emptyset \), we have
that \(M = -N \). Therefore \(S \) has exactly two orientations.

We now prove the claim. Since \(M \) and \(N \) are continuous, it is immediate that \(C \) is closed. But

\[
S - C = \{ p \in S : M(p) = -N(p) \}
\]

and by the same argument, \(S - C \) is closed. Therefore \(C \) is open as well, completing the proof.