4. Let $S = \{(x, y, z) : xy = z^2\}$. Then S is parametrized by $\mathbf{x} : \mathbb{R}^2 \to S$ defined by $\mathbf{x}(u, v) = (u, v, uv)$.

With this coordinate system we have

\[
\begin{align*}
E(u, v) &= \langle \mathbf{x}_u, \mathbf{x}_u \rangle = 1 + v^2 \\
F(u, v) &= \langle \mathbf{x}_u, \mathbf{x}_v \rangle = uv \\
G(u, v) &= \langle \mathbf{x}_v, \mathbf{x}_v \rangle = 1 + u^2
\end{align*}
\]

and, from Example 5 of 3–3,

\[
\begin{align*}
e(u, v) &= 0 \\
f(u, v) &= \frac{1}{(1 + u^2 + v^2)^{\frac{1}{2}}} \\
g(u, v) &= 0
\end{align*}
\]

Now if $\alpha : I \to S$ is a parametrization of a regular curve in S, which we write as

\[\alpha(t) = \mathbf{x}(u(t), v(t))\]

then it follows from Equation (7) on p. 160 that $\alpha(t)$ is an asymptotic curve if and only if

\[
\frac{u'(t) v'(t)}{\left[1 + (u'(t))^2 + (v'(t))^2\right]^\frac{1}{2}} = 0
\]
But this is true if and only if \(u'(t) v'(t) = 0 \) for all \(t \in I \), and this implies that either \(u'(t) = 0 \) for all \(t \) or \(v'(t) = 0 \) for all \(t \). (Why? Since \(a \) is regular, either \(u'(t) \neq 0 \) or \(v'(t) \neq 0 \), for any \(t \in I \). Thus \(\{ t \in I : u'(t) = 0 \} \) and \(\{ t \in I : v'(t) = 0 \} \) are disjoint closed sets whose union is \(I \). Since \(I \) is connected, one of these sets must be all of \(I \).)

From this it follows that the asymptotic curves are (arcs of) the curves \(v = \text{constant} \) or \(u = \text{constant} \).

As for the lines of curvature, \(\alpha(t) = x(u(t), v(t)) \) must satisfy

\[
\frac{1 + \dot{u}^2}{(1 + u^2 + v^2)^{3/2}} (u')^2 = \frac{1 + u^2}{(1 + u^2 + v^2)^{3/2}} (v')^2 = 0
\]

(do Carmo p. 161). Thus

\[
\frac{(u')^2}{1 + u^2} = \frac{(v')^2}{1 + v^2},
\]

so either

\[
\frac{u'(t)}{(1 + u^2)^{1/2}} = \frac{v'(t)}{(1 + v^2)^{1/2}} \text{ for all } t \in I.
\]
or
\[\frac{u'(t)}{(1 + u^2)^{1/2}} = -\frac{v'(t)}{(1 + v^2)^{1/2}} \quad \text{for all } t \in \mathbb{R}. \]

(Why?) Hence
\[\int \frac{u'(t)}{(1 + u^2)^{1/2}} \, dt = \pm \int \frac{v'(t)}{(1 + v^2)^{1/2}} \, dt. \]
\[\int \frac{du}{(1 + u^2)^{1/2}} = \pm \int \frac{dv}{(1 + v^2)^{1/2}}. \]

Now recall that
\[\int \frac{dx}{(1 + x^2)^{1/2}} = (\sinh^{-1} x) + C, \]

so we obtain
\[(\sinh)^{-1} u + (\sinh)^{-1} v = C \]

or
\[(\sinh)^{-1} u - (\sinh)^{-1} v = C \]
as the lines of curvature.

G. a. As in the hint, we take \(r \) to be the z-axis, and a normal to \(r \) as the x-axis. We also restrict
attention to the part of \(C \) lying in the first quadrant, so that \(C \) is the graph of a function \(z \) of \(x \).

Now the tangent line to \(C \) at \((x, z(x))\) intersects the \(z\)-axis at the point \((0, -z(x)x + z(x))\).

We want the line segment from \((x, z(x))\) to \((0, -z(x)x + z(x))\) to have length 1; i.e.

\[
2'(x) x^2 + x^2 = 1
\]

\[z'(x) = -\frac{\sqrt{1-x^2}}{x} \]

Hence

\[
z(x) = -\int \frac{\sqrt{1-x^2}}{x} \, dx = -\int \frac{\cos^2\theta}{\sin\theta} \, d\theta \quad \theta = \sin^{-1} x, \quad 0 < \theta < \frac{\pi}{2}
\]

\[= -\int \csc\theta - \sin\theta \, d\theta \]

\[= -\ln(\csc\theta - \cot\theta) - \cos\theta + C \]

\[= -\ln \left(\frac{1}{x} - \frac{\sqrt{1-x^2}}{x} \right) - \sqrt{1-x^2} + C \]
Since \(z(1) = 0 \), we get \(C = 0 \), so

\[
z(x) = -\ln\left(\frac{1}{x} - \frac{1-x^2}{x}\right) - \sqrt{1-x^2}
\]

C. The curve \(C \) between \(x = 0 \) and \(x = 1 \) is parametrized by

\[
\begin{align*}
\varphi_0(x) &= x \\
\varphi_0(x) &= z(x) = -\ln\left(\frac{1}{x} - \frac{1-x^2}{x}\right) - \sqrt{1-x^2}
\end{align*}
\]

\[0 < x < 1.\] Since

\[
\varphi_0'(x)^2 + \varphi_0'(x)^2 = 1 + \frac{1-x^2}{x^2} = \frac{1}{x^2},
\]

it follows that

\[
\begin{align*}
\varphi(v) &= x^v \\
\varphi'(v) &= \varphi_0(2^v)
\end{align*}
\]

is a parametrization of \(C \) by arc length.

By example 4 on pp. 16-1-2 of do Carmo, it follows that the Gaussian curvature of the pseudosphere is given by

\[
K(x, v) = -\frac{\varphi''(v)}{(\varphi(v))^3}.
\]

(By symmetry, the curvature is independent of the parameter \(u \).)
But
\[- \frac{\psi''(v)}{\psi(v)} = - \frac{d}{x} = -1,\]
completing the proof.

7. 2. From the equation \(K(u,v) = -\frac{\psi''(v)}{\psi(v)} \), it follows that \(K \equiv 0 \) implies \(\psi''(v) = 0 \), which in turn implies that \(\psi(v) = av + b \) for some constants \(a \) and \(b \).

Then \(\psi'(v) = \pm \sqrt{1 - \psi'(v)^2} = \pm \sqrt{1 - a^2} \) so that \(\psi'(v) \) is constant as well. We then get that \(\psi(v) = cv + d \) for some constants \(c \) and \(d \) with \(a^2 + c^2 = 1 \).

If \(a = 0 \), the function \((\psi(v), \psi'(v)) \) is a parametrization of the line \(x = b \), so the surface of revolution is a right circular cylinder. If \(a \neq 0 \), the function \((\psi(v), \psi'(v)) \) is a parametrization of the line \(z = c(\frac{x-b}{a}) + d \), so the surface of revolution is a right circular cone if \(c \neq 0 \) and a plane if \(c = 0 \).

13. We prove a more general result:

Proposition: Let \(F: \mathbb{R}^2 \to \mathbb{R}^3 \) be a diffeomorphism, and let \(S \subset \mathbb{R}^3 \) be a regular surface. Then \(F(S) \) is also a regular surface.
Proof: Let $\overline{p} \in \overline{S}$, $p = F^{-1}(\overline{p}) \in S$. Since S is a regular surface, there exists a differentiable map $x: U \to V$, where U is open in \mathbb{R}^2 and V is a neighborhood of p in S such that

i. x is a homeomorphism

ii. $(dx)(g): \mathbb{R}^2 \to \mathbb{R}^3$ is one-to-one for each $g \in U$.

Now consider $F \circ x$. $F \circ x$ is differentiable since both F and x are; moreover, $F \circ x: U \to F(V)$ is a homeomorphism and $F(V)$ is a neighborhood of \overline{p} in \overline{S}, since $F: S \to \overline{S}$ is a homeomorphism. Finally,

$$d(F \circ x)(g) = (dF)(x(g)) \cdot dx(g)$$

is one-to-one for each $g \in U$ because $(dF)(x(p))$ is invertible. We have therefore found a parametrization of a neighborhood of each point of \overline{S} so that \overline{S} is a regular surface.

Now let F be defined by $F(p) = cp$, c a positive constant. If $N: S \to S^2$ is a unit normal vector field on S, then $\overline{N}: \overline{S} \to S^2$ defined by $\overline{N}(\overline{p}) = N(p)$ is a unit normal vector field on \overline{S}. This can be done because $T_p S = T_{\overline{p}} \overline{S}$ (Why?). Since \overline{N} is
the composition
\[\mathbf{S} \xrightarrow{F} \mathbf{S} \xrightarrow{N} \mathbf{S}^2. \]

it follows that
\[(dN)(\overline{F}) : T_{\overline{F}} \mathbf{S} \rightarrow T_{\overline{F}} \mathbf{S} \]
is just the composition
\[(dN)(\overline{F}) \circ (dF^{-1})(\overline{F}) : T_{\overline{F}} \mathbf{S} \rightarrow T_{\overline{F}} \mathbf{S} = T_{\overline{F}} \mathbf{S}. \]

But \((dF^{-1})(\overline{F}) : T_{\overline{F}} \mathbf{S} \rightarrow T_{\overline{F}} \mathbf{S}\) sends \(v\) to \(\overline{v}\), so
\[dN(\overline{F})(v) = \frac{1}{c} (dN(\overline{F}))(v). \]

Therefore, the eigenvalues of \((dN)(\overline{F})\) are \(\frac{1}{c}\) times the eigenvalues of \(dN(\overline{F})\), from which we conclude that
\[\overline{K}(\overline{F}) = \frac{1}{c} K(\overline{F}) \]
\[\overline{H}(\overline{F}) = \frac{1}{c} H(\overline{F}). \]

Note: If \(F : \mathbb{R}^2 \rightarrow \mathbb{R}^2\) is an arbitrary diffeomorphism, it is not the case that \(T_{\overline{F}}(\mathbf{S}) = T_{F}(\mathbf{S})\). We thus cannot expect such a nice relation between \(\overline{K}\) and \(K\) or \(\overline{H}\) and \(H\).
16. Let \(S \) be a compact regular surface in \(\mathbb{R}^3 \) and consider the differentiable function \(f: S \to \mathbb{R} \) defined by \(f(x, y, z) = x^2 + y^2 + z^2 \). Since \(S \) is compact, there exists \(p = (x_0, y_0, z_0) \) for which \(f(p) \) is a maximum. Clearly, \(p \) is not at the origin. I claim that the orientation \(N: S \to S^2 \) can be chosen so that \(\nabla f(p) \cdot v < 0 \) for all \(v \in T_p S \) with \(|v| = 1 \). Assuming the claim, it follows that \(\lambda_1 < 0 \) and \(\lambda_2 < 0 \) (since if \((dN_p)(v) = -\lambda_1 v_1 \) and \(|v_1| = 1 \), we have \(\nabla f(v_1) = -\lambda_1 v_1 \)), so that \(p \) is an elliptic point.

Proof of claim: Let \(\alpha: I \to S \) be a regular curve parametrized by arc length with \(\alpha(0) = p \). Then the function \(\alpha\cdot \alpha' \) attains its maximum at \(t = 0 \), so

1) \((\alpha \cdot \alpha')(0) = 0 \)

2) \((\alpha \cdot \alpha')(0) \leq 0 \)

Equation 1) implies that \(p \cdot \alpha'(0) = \alpha(0) \cdot \alpha'(0) = 0 \); since \(\alpha \) was arbitrary, this proves that \(p \) is normal to \(T_p S \). We may thus choose \(N: S \to S^2 \) so that \(N(p) = \frac{p}{|p|} \). Now equation 2) implies that
\[0 \geq a'(0) \cdot a'(0) + a(0) \cdot a''(0) > |p| N(p) \cdot a''(0) \]
\[\geq |p| K_n(p) \]
\[\geq |p| \Pi_p(a'(0)). \]

Therefore, \(\Pi_p(a'(0)) < 0 \). Since \(a \) was arbitrary, this completes the proof.

3.5

3.5a Let \(S \) be a regular surface without umbilical points. If \(S \) is a minimal surface, then \(H \equiv 0 \) and \(S \) has no planar points (since any planar point is an umbilical point). It then follows from exercise 17 of 3.2 that
\[\langle dN_p(w_1), dN_p(w_2) \rangle = -K(p) \langle w_1, w_2 \rangle \]
for all \(p \in S \) and \(w_1, w_2 \in T_pS \).

Conversely, suppose \(S \) is a regular surface without umbilical points and that
\[\langle dN_p(w_1), dN_p(w_2) \rangle = \lambda(p) \langle w_1, w_2 \rangle \]
for all \(p \in S \) and \(w_1, w_2 \in T_pS \). Let \(e_1 \) be a \(\lambda \)-eigenvector with eigenvalue \(\lambda_1 \), and let \(e_2 \) be a \(\lambda \)-eigenvector with eigenvalue \(\lambda_2 \). Then
\[\lambda(p) = \lambda(p) \langle e_1, e_2 \rangle = \langle dN_p(e_1), dN_p(e_2) \rangle = \lambda_1^2, \]
and
\[\lambda(p) = \lambda(p) (e_1, e_2) = \langle dN_p (e_1), dN_p (e_2) \rangle = \delta_{12} \]

Since \(S \) has no umbilical points, this implies that \(\delta_{13} = \delta_{22} \).

Therefore, \(\mu = 0 \) and \(S \) is a minimal surface.

b. If \(\sigma \) is isothermal, then there exists a function \(\zeta: \mathbb{U} \to (0, \infty) \) such that

\[\langle d\xi_{x(u,v)}(v_1), d\xi_{x(u,v)}(v_2) \rangle = \zeta(u,v) \langle v_1, v_2 \rangle \]

for all \((u,v) \in \mathbb{U}\) and \(v_1, v_2 \in \mathbb{R}^2\). Also, \(d(N^{-1})_{\theta} = (dN_{\theta})^{-1}\),

where \(N(\theta) = \theta \); it then follows from part a) that

\[\lambda(p) \langle d(N^{-1})_{\theta} z_1, d(N^{-1})_{\theta} z_2 \rangle = \langle dN_{\theta} (dN^{-1})_{\theta} (z_1), dN_{\theta} (dN^{-1})_{\theta} (z_2) \rangle \]

for all \(z_1, z_2 \in T_{\theta} S^2 = T_{\theta} S \). Therefore, if \(v_1, v_2 \in \mathbb{R}^2 \) and \(\sigma(u,v) = \theta \), \(N^{-1}(\theta) = \rho \), we have that

\[\frac{c(u,v)}{\lambda(p)} \langle v_1, v_2 \rangle = \frac{1}{\lambda(p)} \langle d\xi_{x(u,v)}(v_1), d\xi_{x(u,v)}(v_2) \rangle \]

\[= \langle d(N^{-1})_{\theta} (d\xi_{x(u,v)}(v_1)), d(N^{-1})_{\theta} (d\xi_{x(u,v)}(v_2)) \rangle \]

\[= \langle d(N^{-1})_{\theta} (v_1), d(N^{-1})_{\theta} (v_2) \rangle. \]

This proves that \(N^{-1}\theta \) is isothermal.