Lecture #2, Friday, Oct 2, 2015: 1st Order ODE's
Some definitions
How can we solve an ODE?
Linear ODE s:
Separable ODE's

Outline

1. Some definitions

2. Linear ODE s:

3. Separable ODE’s
 - Initial value problems:
Some definitions
How can we solve an ODE?
Linear ODEs:
Separable ODEs

Reading: §2.1, §2.2

Homework:
- §2.1 #13, 15, 18, 20, 31, 32.
- §2.2 #1, 4, 6, 29 (assume a, b, c, and d are all positive).
Some definitions

How can we solve an ODE?

Linear ODEs:

Separable ODEs

\[
\frac{dy}{dt} = f(t, y) \tag{1}
\]

A function \(y = \phi(t) \) is called a solution to (1) if the identity

\[
\phi'(t) = f(t, \phi(t))
\]

holds for all \(t \). The graph of a solution called an integral curve of the differential equation.

An initial value problem is a differential equation together with an initial condition

\[
y(t_0) = y_0
\]

for some numbers \(t_0 \) and \(y_0 \). The solution (to the initial value problem) is the function \(y = \phi(t) \) that satisfies the two conditions

\[
\phi'(t) = f(t, \phi(t)) \text{ and } \phi(t_0) = y_0.
\]
Example

The function \(\phi(t) = e^{-t^2/2} \) is a solution of the ODE \(y' = -ty \), because

\[
\phi'(t) = e^{-t^2/2} \left(-\frac{2t}{2} \right) = -te^{-t^2/2} = -t\phi(t).
\]

Another solution: \(\phi_1(t) = 5e^{-t^2/2} \).

In fact, the **general solution** is \(y = Ce^{-t^2/2} \).

To determine \(C \), need an **initial condition**.

Example: To find the solution of the **initial value problem**

\[
y' = -ty, \quad y(3) = 7,
\]

substitute into the general solution \(C e^{-3^2/2} = 7 \)

and solve for \(C \) to get \(y = 7e^{9/2} e^{-t^2/2} \).
In general, this is a difficult problem; but there are special cases where we can solve the ODE. We consider ODEs of the two forms:

- **first order (inhomogeneous) linear ODEs:**
 \[y' + p(t)y = g(t), \]
 where \(p(t) \) and \(g(t) \) are continuous.
 When \(g(t) = 0 \) for all \(t \), the ODE is said to be **homogeneous**.

- **separable first order ODEs**
 \[h(y)y' = g(t), \]
 where \(g \) and \(h \) are continuous functions.
Here are some examples of linear ODEs:

\[\frac{dy}{dt} + 2y = 0 \quad y' + 2y = e^t \]
\[\frac{dy}{dt} + ty = 0 \quad y' + ry = k, \quad r, k \text{ constant} \]
\[(1 + t^2)y' + y = 0 \quad ty' + y = te^t \]
\[y' + t^{-1}y = 1, \quad t > 0 \quad y' + y = \sin^{-1}(t), \quad |t| < 1 \]
\[y' + \sqrt{1 - t^2}y = t, \quad |t| < 1 \]

Here are some examples of nonlinear ODEs:

\[\frac{dy}{dt} + 2y^2 = 0 \quad y' + 2 \frac{1}{y} = e^t \quad y \frac{dy}{dt} + ty = 2 \]
\[(y')^2 + y = t \quad y' + \sqrt{y} = 0 \quad y' + ty = (1 + y^2) \]
$y' + p(t)y = g(t).$

- Every solution is of the form: $y = y_p(t) + C y_1(t)$ where

 $C = \text{constant}$

 $y_p(t) = \underline{a \text{ particular solution}}$

 $y_1(t) = \text{solution of the homogenous equation: } y' + p(t)y = 0.$

- The solution of the \text{initial value problem}:

 $y' + p(t)y = g(t) \quad y(t_0) = y_0$

 is $y = y_p(t) + C y_1(t)$ where C is the solution of

 $y_p(t_0) + C y_1(t_0) = y_0.$
Set \(P(t) = \int_{t_0}^{t} p(s) \, ds \).

Notice that \(P'(t) = p(t) \), so \(\left(e^{P(t)} \right)' = e^{P(t)} P'(t) = e^{P(t)} p(t) \).

Multiply \(y' + p(t)y = 0 \) by the integrating factor \(e^{P(t)} \):

\[
e^{P(t)} y' + \left(e^{P(t)} \right)' y = 0
\]

By the product rule

\[
\left(e^{P(t)} y \right)' = e^{P(t)} y' + \left(e^{P(t)} \right)' y = 0
\]

So

\[
e^{P(t)} y = C \text{ or } y = Ce^{-P(t)}.
\]
Write solution in form:

\[y = f(t)e^{-P(t)}, \text{ where } P(t) = \int^t p(s) \, ds \]

and \(f(t) \) is an unknown function of \(t \). Then

\[\left(f(t)e^{-P(t)} \right)' + p(t)f(t)e^{-P(t)} = g(t). \]

Simplify:

\[f'(t)e^{-P(t)} = g(t) \text{ or } f'(t) = g(t)e^{P(t)} \]

Therefore,

\[f(t) = \int g(t)e^{P(t)} \, dt = \int^t g(s)e^{P(s)} \, ds + C \]

\[y = f(t)y_1(t) = y_p(t) + Cy_1(t), \]

where \(y_1(t) = e^{-P(t)} \) and \(y_p(t) = e^{-P(t)} \int^t g(s)e^{P(s)} \, ds \).
Solve the ODE $y' + 3y = e^t$

- First solve the homogeneous ODE $y' + 3y = 0$ to get $y_1(t) = e^{-3t}$.
- Write $y = f(t)e^{-3t}$, and substitute into the inhomogeneous equation:

$$\left(f(t)e^{-3t}\right)' + 3f(t)e^{-3t} = e^t$$

Everything automatically collapses to give $A'(t)e^{-3t} = e^t$ or

$$A'(t) = e^{4t}$$

Integrate to get $f(t) = \frac{1}{4}e^{4t} + C$ and

$$y = f(t)e^{-3t} = \frac{1}{4}e^{4t}e^{-3t} + Ce^{-3t} = \frac{1}{4}e^t + Ce^{-3t}$$
Solve the initial value problem \(y' + 3y = e^t, \ y(1) = 6 \)

Find the “general solution” (as in the previous example)

\[
y = \frac{1}{4} e^t + C e^{-3t}
\]

Then plug in \(t = 1 \) and \(y = 6 \) to get

\[
6 = \frac{1}{4} e^1 + C e^{-3} \quad \text{or} \quad C = e^3 (6 - e/4)
\]

or \(y = \frac{1}{4} e^t + e^3 (6 - e/4) e^{-3t}. \)
Solve the ODE $y' + 3ty = te^{t^2}$

- First solve the homogeneous equation: $y' + 3ty = 0$ to get

 $$y_1(t) = e^{-3t^2/2}$$

- Next set $y = f(t)y_1(t) = f(t)e^{-3t^2/2}$ and plug into the inhomogeneous ODE to get

 $$A'(t)e^{-3t^2/2} = te^{t^2}$$ or $A'(t) = te^{5t^2/2}$

Integration gives $f(t) = \frac{1}{5}e^{5t^2/2} + C$ and

$$y = \left(\frac{1}{5}e^{5t^2/2} + C\right) e^{-3t^2/2} = \frac{1}{5}e^{t^2} + Ce^{-3t^2/2}$$
Because we actually **solve** for the solution of the initial value problem, it clearly exists and it is unique. The only assumption that we made is that the two integrals

\[
\int_{t_0}^{t} p(s) \, ds \quad \text{and} \quad \int_{t_0}^{t} e^{\int_{s}^{t} p(s) \, ds} g(s) \, ds
\]

make sense. This is the case if \(p(t) \) and \(g(t) \) are continuous functions. The precise statement of what we have proved is contained in the following theorem:

Theorem

Let \(p(t) \) and \(g(t) \) be continuous functions defined on the interval \(a < t < b \) and suppose that \(a < t_0 < b \). Then there is one and only one solution \(y = \phi(t) \) of the initial value problem

\[
y' + p(t) y = g(t), \quad y(t_0) = y_0.
\]

The solution is defined for all \(t \) in the interval \((a, b) \).
Consider an ODE of the form

\[h(y)y' = g(t) \]

where \(g(t) \) and \(h(y) \) are continuous functions. To solve let

\[
\int h(y) \, dy = H(y) + C_1 \quad \text{and} \quad \int g(t) \, dt = G(t) + C_2 .
\]

Then

\[
\frac{dG(t)}{dt} = g(t) \quad \text{and} \quad \frac{dH(y)}{dt} = h(y) \frac{dy}{dt} .
\]

So we get the **implicit** solution

\[
H(y) + C_1 = G(t) + C_2 . \quad \text{or} \quad H(y) = G(t) + C
\]

where \(C = C_2 - C_1 \), again an arbitrary constant.

NOTE: Solve for \(y \) in terms of \(t \) if you can!
Example:

Solve the differential equation

$$\frac{dy}{dt} = (1 + y^2)e^t.$$

Step 1. Get into the form $h(y)y' = g(t)$:

$$\frac{1}{1 + y^2} \frac{dy}{dt} = e^t.$$

Step 2. Integrate:

$$\int \frac{dy}{1 + y^2} = \int e^t \, dt.$$

$$\tan^{-1}(y) = e^t + C \text{ or } y = \tan(e^t + C)$$

where C is an arbitrary constant.
To solve the initial value problem

\[h(y)y' = g(t) \quad y(t_0) = y_0 \]

Step 1. Find the general solution:

\[H(y) = G(t) + C \]

where \(H'(y) = h(y) \) and \(G'(t) = g(t) \).

Step 2. Find \(C \):

\[H(y_0) = G(t_0) + C \text{ or } C = H(y_0) - G(t_0) \]

Final solution:

\[H(y) - H(y_0) = G(t) - G(t_0). \]
Example: Solve $y' = (1 + y^2)e^t$, $y(0) = 1$

First solve the ODE:

$$\tan^{-1}(y) = e^t + C$$

Set $t = 0$ and $y = 1$ to get

$$\tan^{-1}(1) = e^0 + C \implies \pi/4 = 1 + C \implies C = \pi/4 - 1$$

So $\tan^{-1}(y) - \tan^{-1}(1) = e^t - e^0$

or $\tan^{-1}(y) - \pi/4 = e^t - 1$.

Solving for y gives $y = \tan \left(e^t - 1 + \pi/4 \right)$.