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Abstract

Approximation Properties of

Subdivision Surfaces

by Greg Arden

Chair of Supervisory Committee:

Professor Tom Duchamp
Department of Mathematics

Splines are piecewise polynomial functions defined on a domain in Euclidean space. Because

they are easily computed and have high-order approximation power, they are useful for

modeling surfaces. Modeling a complex surface with splines typically requires a number of

spline patches, which must be smoothly joined, making splines cumbersome to use.

Subdivision schemes generalize splines to domains of arbitrary topology. Thus, subdi-

vision functions can be used to model complex surfaces without the need to join patches.

Like splines, subdivision schemes have a multiresolution structure (i.e, a nested sequence of

function spaces) associated to subdivisions of the domain. This thesis shows that a particu-

lar class of subdivision functions also have high-order approximation power. Although only

one subdivision scheme, Loop’s, is analyzed, the approach appears to be more general.

The main result is an approximation theorem in Sobolev spaces Hs of functions with

square integrable derivatives up to order s. It is shown that each function f in H r, r ≤ 3

can be approximated in Hs, s < r, with error on the order of λ(r−s−ε)k, where k is the

multiresolution level of the approximation, λ is a number between 1/2 and 5/8, associated

to the valences of the vertices of the domain complex, and ε > 0 is arbitrary.

This approximation theorem provides a theoretical foundation for various applications

of subdivision schemes, such as the solution of thin shell problems in elasticity.
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Chapter 1

INTRODUCTION

Geometric modeling is concerned with the mathematical representation of shapes on a

computer. Applications include computer-aided design, engineering and manufacturing, as

well as computer graphics and animation. A geometric model of a surface is an approxima-

tion to some ideal surface. The ideal surface could be a physical object such as a persons

hand, a mathematical object such as the solution to a differential equation, or a concept

such as an artist’s idea for the shape of an animated character.

We consider two traditional types of surface models: a polygonal mesh and a polynomial

spline. A polygonal mesh (mathematically a polyhedron) is a simple and flexible type of

model, but there are two problems. First, a polygonal mesh is not smooth. A non-smooth

model may not be a satisfactory approximation to a smooth surface. Second, polygonal

meshes have poor approximation properties (as discussed in Section 1.2). So accurate

approximation of a curved surface requires a mesh with many faces.

Modeling with polynomial splines solves the smoothness and approximation problems,

at least locally. A class of splines can be chosen that has an arbitrary degree of smoothness,

and a correspondingly high-order of approximation. However, spline surfaces are inherently

parameterized surface representations, and it is difficult to construct a parameterization

for a complicated surface. So polynomial splines are used locally to represent a region of

a surface called a “surface patch”, and a global surface is typically composed of multiple

patches. Figure 1.1 shows an example of a complicated surface modeled with spline patches.

The use of patches introduces a new problem. It is difficult to ensure the desired smoothness

conditions across adjoining patches.

Subdivision surfaces are a hybrid of polygonal meshes and polynomial splines. They are
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Figure 1.1: Modeling with polynomial spline patches. Each colored patch is a polynomial
spline.

flexible, easily allowing for the modeling of surfaces of arbitrary topology. Also subdivision

surfaces are smooth. For example, Loop’s subdivision scheme (as described in Section 1.3)

generates a specific class of subdivision surfaces. Theses surfaces are C2, except at a finite

set of points at which they are C1. In this thesis we examine the global approximation

properties of subdivision surfaces, specifically those generated by Loop’s subdivision scheme.

Subdivision schemes such as Loop’s are based on subdivision properties of polynomial

splines. These subdivision rules are then extended to a more general setting. In the following

sections of the Introduction we show how polynomial splines are defined by a subdivision

process, introduce Loop’s subdivision scheme, and review some approximation results for

meshes and splines.
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1.1 Subdivision Properties of Splines

A polynomial spline can be represented as the limit of a subdivision process. A uniform cubic

spline is a C2 function that is a piecewise polynomial of degree three, and the polynomial

domains are of uniform size. In particular, consider the cubic spline φ shown in Figure 1.2(a).

The spline φ is a polynomial on each interval between integers, it vanishes outside [−2, 2],
and is scaled so that φ(0) + φ(−1) + φ(1) = 1. The set of integer translates of this function

{φ(· − j) : j ∈ Z} is a basis for the space of all cubic splines that are polynomial on integer

intervals.

In Figure 1.2(b), we show a typical cubic spline that is polynomial on integer intervals

and a graph of its coefficients with respect to the basis. Notice that the piecewise linear

curve connecting the coefficients roughly approximates the spline. It is called the control

net.

-2 -1 1 2

0.2

0.4

0.6

0.8

PSfrag replacements

φ

(a) Basis function

1 2 3

-1

-0.5

0.5

1

1.5

2

(b) Spline and control net

Figure 1.2: (a) Uniform cubic splines are spanned by translates of a single basis function.
(b) The translated basis functions, their coefficients, and the resulting spline.

Let {Sk} be a sequence of function spaces defined by the dilates and translates of φ.

Specifically, let Sk be spanned by {φ(2k(· − j)) : j ∈ 2−kZ}. The space Sk consists of all

cubic splines that are polynomial between consecutive points of 2−kZ. Clearly our sequence

of spaces is nested with Sk ⊂ Sk+1. Any spline f ∈ Sk is determined by a control net ak at
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level k, that is, f(x) =
∑
akjφ(2

k(x − j)) summing over j ∈ 2−kZ. Since f ∈ Sk+1 it also

has a control net ak+1 at level k + 1.

The map taking ak into ak+1 is called the Lane-Riesenfeld subdivision scheme. The

algorithm for cubic spline subdivision is as follows: At a vertex of the level k control

net, we take a weighted average of this vertex value with the neighbors on either side to

produce the corresponding vertex at level k + 1. The weights used for this average are 3
4

for the central vertex and 1
8 for each neighbor, as represented by the vertex mask shown in

Figure 1.3(a). Also, we average adjacent vertices of the level k control net to get the new

midpoint vertices of the level k + 1 control net. This averaging is represented by the edge

mask shown in Figure 1.3(b). Figure 1.3(c) shows an example of the subdivision procedure.

The successively refined control nets converge in the limit to the spline function. We can

also form parameterized curves in R3 by taking the spline coefficients to be in R3.

PSfrag replacements

3/4 1/81/8

(a) Vertex mask

PSfrag replacements
1/21/2

(b) Edge mask

1 2 3

-1

-0.5

0.5

1

1.5

2

(c) Refined control nets

Figure 1.3: Refined control nets converge to the spline.

Quartic triangular splines are bivariate polynomial splines. They are C2 functions on R2

that are piecewise degree-four polynomials. The pieces are defined by a regular triangular

grid as in Figure 1.4(a). As in the case of the cubic splines, the spline space we are interested
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1 2 3 4 5

1

2

3

4

5

(a) Regular Grid (b)

Figure 1.4: (a) A regular triangular grid in the plane. (b) The quartic triangular spline
basis function.

in is spanned by translates of a single basis function φ, which is shown in Figure 1.4(b). We

define nested spaces of quartic triangular splines by

Sk = span
{
φ
(
2k(· − j)

)
: j ∈ 2−kZ2

}
. (1.1)

The control net for a quartic spline f(x) =
∑
ajφ(2

k(x−j)) ∈ Sk at level k is the coefficient

map j 7→ aj for j ∈ 2−kZ2. The subdivision procedure, transforming a control net at level

k into a control net at level k+ 1, is given by a vertex mask and an edge mask as shown in

Figures 1.5(a) and 1.5(b).

1.2 Approximation Results for Meshes and Splines

We now review the approximation power of mesh and spline geometric modeling techniques.

A surface can locally be parameterized so the problem of locally approximating a surface

can be cast as a problem of approximating a function, namely, the parameterization. Given

a function f to be approximated and a space S of functions from which to choose an

approximation, we seek a bound on the minimum approximation error

dist(f, S) = min
g∈S

‖f − g‖ . (1.2)
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PSfrag replacements
5/8

1/161/16
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1/16 1/16
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PSfrag replacements 3/83/8
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(c) Extraordinary vertex.

Figure 1.5: (a)-(b) Subdivision masks for quartic triangular splines. (c) For Loop’s subdi-
vision we add the extraordinary vertex masks.

We will use L2-Sobolev norms to measure the approximation error. Recall, given a function

f : Ω→ R on a domain in R2, the Hs-Sobolev norm of f is defined by

‖f‖Hs(Ω) =

( ∑

|α|≤s
‖Dαf‖2L2(Ω)

)1/2
,

where α = (α1, α2) is a multi-index of non-negative integers, |α| = α1 + α2, and Dαf =

∂|α|f

∂x
α1
1 ∂x

α2
2

. The Sobolev norm is the natural norm for the analysis of the finite element

method. In Section 6.3 we apply our approximation result to analyze the finite element

method using subdivision functions.

To analyze local approximation by a triangular mesh, we view the surface locally as a

graph, a special form of a parameterized surface. Specifically, let p ∈ M be a point on a

smooth surface in R3, and let TpM be the tangent plane to M at p. By an orthogonal

change of coordinates, e.g., a rotation, we can consider TpM to be the xy-plane. There is a

neighborhood N ⊂M containing p such that N is the graph of a function z = f(x, y) on a

neighborhood of p in the xy-plane. Now suppose K is a triangular mesh that is a sufficiently

good approximation to M . Then on a neighborhood of p on the xy-plane, the triangular

mesh K is the graph of a piecewise linear function z = f̃(x, y). So we can measure the local

approximation error of K by the norm ‖f − f̃‖. Conversely, the graph of any piecewise

linear function defined near p on TpM is a local triangular mesh. So we have reduced the
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problem of locally approximating a surface by a triangular mesh to a problem of function

approximation by a piecewise linear function.

We review approximation results for piecewise linear functions. Given a triangulation K

of a polygonal region Ω ⊂ R2, let PL(K) denote the space of piecewise linear functions on

Ω that are linear on each face of K. We define the chunkiness parameter γ(T ) of a triangle

T to be the ratio of the radius of the inscribed ball of T to the radius of the circumscribed

ball of T . The following approximation theorem for piecewise linear functions can be found,

for example, in [3].

Theorem 1. Given a maximum chunkiness Γ and a polygonal domain Ω ⊂ R2, there is a

constant C = C(Ω,Γ), such that for any triangulation K of Ω satisfying γ(T ) < Γ for each

triangle T in K, we have the following bound on the approximation error for any function

f ∈ H2(Ω):

dist(f,PL(K))Hs(Ω) ≤ Cmax
T∈K

diam(T )2−s‖f‖H2(Ω) (1.3)

for s = 0 or 1.

Next we consider local approximation of a surface by quartic triangular splines. We

assume the surface is locally parameterized, either as a graph as above or by some other

parameterization. Thus, again, local surface approximation is reduced to function approx-

imation. Approximation theorems for splines were first proved by deBoor and Fix [5], by

constructing a quasi-interpolant. Approximation results in Sobolev spaces for box splines, of

which quartic triangular splines are an example, were proved by Kowalski [12]. In particular,

using the nested spaces of quartic triangular splines in (1.1) we have

dist(f, Sk)Hs ≤ C(
1

2
)(4−s)k‖f‖H4 for s = 0, . . . , 3 , (1.4)

where the constant C is independent of both f and k.

From (1.3) we say that the approximation power of piecewise linear functions is order

2, while from (1.4) the approximation power of quartic splines is order 4.



8

1.3 Loop’s Subdivision Scheme

We now define Loop’s subdivision scheme. Loop’s subdivision functions are a generalization

of quartic triangular splines, in which the domain can be any triangulated surface instead

of just a regular triangulated domain of the plane. Given a triangulated surface K a control

net on K is an assignment of a control point in Rm to each vertex of K. A subdivision

function is defined as the limit of a sequence of control nets. A subdivision function is

determined by two pieces of information: (i) a triangulated surface K0, which is the domain

and (ii) an initial control net on K0. In the most common situation K0 is a triangulated

surface in R3 and also acts as the initial control net with control points in R3. In this case

the image of the subdivision function into R3 is a surface called a subdivision surface.

At each level k of subdivision we construct a refined triangulation of K0, denoted Kk,

by introducing a vertex at the midpoint of each edge in Kk−1 and splitting each triangle of

Kk−1 into 4 sub-triangles. The control net at level k is a control net on Kk. Each control

point at level k is computed by averaging the neighbors of the level k − 1 control net. The

vertex and edge masks used for quartic triangular splines are also used for Loop’s subdivision

scheme, and in addition there is a vertex mask for extraordinary vertices, those with valence

other than 6. The vertex and edge masks are shown in Figure 1.5. The formula for the

weights wn and vn for extraordinary vertices of valence n can be found in Section 2.1.4.

Figure 1.6 shows an example of (a) an initial control net, which acts also as the domain

K0, (b)-(c) the control net after one and two levels of subdivision, and (d) the limit surface,

that is, the image of the subdivision function.

The subdivision procedure converges to a continuous limit function. The process is

local, in the sense that, the limit function restricted to a triangle of Kk only depends on

the control net in a nearby neighborhood. So, if this neighborhood has the connectivity of

a regular grid, then the subdivision function will be a quartic polynomial on that triangle.

Since all the vertices introduced by subdivision have valence 6, any point, other than an

extraordinary vertex, is eventually in a regular neighborhood. Therefore, other than at an

extraordinary vertex, every point has a neighborhood on which Loop’s subdivision functions

are quartic splines.



9

(a) Initial Mesh (b) Level 1 (c) Level 2 (d) Limit Surface

Figure 1.6: Loop’s Subdivision procedure.

In this thesis we extend the approximation result for quartic triangular splines to Loop’s

subdivision functions. Although complete results are presented only for Loop’s subdivi-

sion scheme, much of the theory is applicable to other stationary subdivision schemes that

generate polynomial splines on regular grids. Denis Zorin [24] has reported similar results.

The main approximation theorem we prove for Loop’s subdivision functions is analogous

to (1.4). For any triangulated surface K, let S(K) denote the space of Loop’s subdivision

functions on K that are determined by some control net on K. Since Kk is a refinement of

the triangulated surface K, we have a nested sequence of function spaces S(Kk) ⊂ S(Kk+1).

In our theory, the role of the base 1
2 which appears in (1.4) is played by the subdominant

eigenvalues of the subdivision matrix, defined in Section 2.4. Let λmax = λmax(K) be the

largest subdominant eigenvalue of a subdivision matrix whose valence is represented by a

vertex of K or 1
2 whichever is greater.

Theorem 2. Let S(Kk) be the space of Loop’s subdivision functions on the k-times subdi-

vided complex Kk. For integers 0 ≤ s < r ≤ 3 and any ε > 0 we have the following bound

on the minimal Hs(K)-approximation error of a function f ∈ Hr(K):

dist(f, S(Kk))Hs(K) ≤ Cελ
(r−s−ε)k
max ‖f‖Hr(K) ,

where the constant Cε = C(ε,K) is independent of k and f .

Cases of particular interest follow:
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Corollary 3. Given a smooth function f ∈ H3(K) we have

dist(f, S(Kk))L2(K) = O(λ(3−ε)k) (1.5)

for any ε > 0, where λ = λmax(K).

Corollary 4. The space of Loop’s subdivision functions at all levels
⋃∞
0 S(Kk) is dense in

H2(K).

Theorem 2 shows that the approximation power of Loop’s subdivision functions is order

3. The behavior of the subdivision functions near the extraordinary vertex causes the

deterioration of the approximation order.

An overview of the thesis is as follows. In Chapter 2 we review the fundamentals of

subdivision surfaces and define differentiation on a simplicial surface. In Chapter 3 we

show how the main theorem, Theorem 2, can be reduced to an approximation theorem on

a neighborhood of an extraordinary vertex. We develop a general theory of approximation

on these neighborhoods in Chapter 4 . The theory is based on a generalization of the idea

of a quasi-interpolant. In Chapter 5 we construct a quasi-interpolant for Loop’s scheme,

completing the proof of the main theorem. Finally, in Chapter 6, we provide a summary

of the thesis, consider possible extensions this result, and discuss applications to the finite

element method.
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Chapter 2

FUNDAMENTALS OF SUBDIVISION SURFACES

In this chapter we describe the fundamentals of subdivision surfaces. First we discuss

triangulated surfaces in terms of the abstraction of a simplicial complex. The domains of the

control nets for a subdivision surface and the domains of the subdivision function are both

defined in terms of simplicial complexes. We define stationary subdivision schemes. Loop’s

scheme and its generalizations are particular examples. We define subdivision functions

as the limit of the subdivision operation. Then we introduce the subdivision map and

the characteristic map, which are key concepts for analyzing a subdivision surface near an

extraordinary vertex.

To make sense of the main theorem we need a differentiable structure on a triangulated

surface. We do this by introducing two atlases of coordinate charts on a triangulated surface.

We introduce an atlas of affine coordinates, covering a triangulated surface except at the

extraordinary vertices, and we introduce an atlas of characteristic coordinate charts which

cover the entire triangulated surface.

2.1 Stationary Subdivision on Simplicial Complexes

2.1.1 Simplicial Surfaces

We review the necessary theory of simplicial complexes. Most of this material is based on

Spanier [19]. A simplicial complex K is a set Vertex(K) called the vertices and a collection

of finite, nonempty subsets of Vertex(K) called simplices, such that, (i) every set consisting

of exactly one vertex is a simplex of K, and (ii) every non-empty subset of a simplex of K is

also a simplex of K. A simplex s of K containing exactly q+1 vertices is called a q-simplex.

Since the vertices of K can be identified with the 0-simplices of K, we consider K to be just

the collection of simplices. The star of a simplex s is the collection of all simplices σ ∈ K
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such that s ⊂ σ. We assume that all of our simplicial complexes are star-finite, that is, the

star of each simplex is finite.

A simplicial map φ : K1 → K2 is a map φ : Vertex(K1) → Vertex(K2) such that for

every simplex s ∈ K1, the image φ(s) is a simplex in K2. If φ is one-to-one, then the map

is an embedding, and if additionally it is onto Vertex(K2) and φ
−1 is also a simplicial map,

then φ is a simplicial isomorphism.

A subcomplex L of a simplicial complex K, denoted L ⊂ K, is a subset of K that is a

simplicial complex. Given any simplex s ∈ K, let s̄ ⊂ K denote the subcomplex containing

s and all of its subsets. For any subcomplex L ⊂ K we define a subcomplex, called the

1-neighborhood of L in K, denoted N1(L,K), by

N1(L,K) =
⋃
s̄ , where s ∈ K and s̄ ∩ L 6= ∅ .

Successively larger neighborhoods are defined recursively by Nj(L,K) = N1(Nj−1(L,K)).

If the ambient complex K is clear from context we simplify the notation to N1(L). For any

subcomplex L ⊂ K we define a subcomplex K \ L by

K \ L =
⋃
s̄, where s ∈ K and s /∈ L . (2.1)

Notice, this is not the same as the set difference {s ∈ K : s /∈ L}, which is in general is not

a subcomplex.

Given a simplicial complex K, the topological realization of K, denoted |K|, is the set

of all functions α : Vertex(K)→ [0, 1] such that (i) the set of vertices {v ∈ K : αv 6= 0} is a

simplex of K , and (ii)
∑
αv = 1. The topology of |K| is given by the metric

d(α, β) =

(∑

v

(αv − βv)2
)1/2

for α, β ∈ |K| .

For a simplex s ∈ K, the closed simplex |s| ⊂ |K| is given by

|s| = {α ∈ |K| : αv = 0 for all v /∈ s} .

If s is a q-simplex, then |s| is homeomorphic (and in fact isometric) to the standard q-

simplex {x ∈ Rq+1 : 0 ≤ xi ≤ 1, and
∑
xi = 1}. We identify each vertex v ∈ K with its
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characteristic function v ∈ |K|, or more precisely, vw is one if w = v and otherwise zero.

Then any point α ∈ |K| can be represented as a sum

α =
∑

v∈K
αvv ,

where the sum is a convex combination of vertices in a simplex of K.

Next we define piecewise linear maps on a simplicial complex. Let X be either Rn for

some n, or the topological realization of some complex. A piecewise linear map f : |K| → X

is given by

f(α) =
∑

v∈K
αvf(v) for all α ∈ |K|.

For example, a simplicial map φ : K1 → K2 induces a piecewise linear map |φ| : |K1| → |K2|
given by

|φ|(α) =
∑

v∈K
αvφ(v).

An injective piecewise linear map from |K| into Rn for some n is called a geometric realization

of K.

Notice that a piecewise linear map is completely determined by its values on Vertex(K).

Both piecewise linear functions and subdivision functions are determined by functions on

Vertex(K), which we call control nets. The space of all control nets on K is denoted by

CN(K) = {u : Vertex(K)→ R} .

A simplicial map φ : K1 → K2 induces a pull-back φ
∗ : CN(K2)→ CN(K1) by (φ∗u)v = uφ(v).

The pull-back is used more generally for functions on arbitrary spaces.

Now, we focus on 2-dimensional simplicial complexes. A simplicial surface is a complex

whose topological realization is a surface, possibly with boundary. A simplicial sub-surface

is a subcomplex of a simplicial surface that is a simplicial surface itself. On a simplicial

surface we call the 1-simplices edges and the 2-simplices faces. The collections of all these

simplices on a given simplicial surface K are denoted by Edge(K) and Face(K). The valence

of a vertex is the number of edges incident to the vertex. On a simplicial surface K without

boundary the valence of every vertex is at least three, and any two vertices of the same

valence have isomorphic stars.
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Figure 2.1: A simplicial surface K and its subdivided complex D(K).

A subdivision of a complex K is a simplicial complex K ′ such that: (i) the vertices of

K ′ are points of |K|, (ii) if s′ is a simplex of K ′ there is a simplex s of K such that s′ ⊂ |s|
(that is, s′ is a finite subset of |s|), and (iii) the piecewise linear map ι : |K ′| → |K| induced
by the identification of vertices in K ′ with points in |K| is a homeomorphism. If K ′ is a

subdivision of K, we identify |K ′| with |K| by the piecewise linear homeomorphism ι in

condition (iii). So if K ′′ is a subdivision of K ′, then K ′′ is also a subdivision of K.

For a simplicial surface K we define the “4 to 1” subdivision of K, denoted by D(K).

The vertices ofD(K) are of two types. First, for each vertex v ∈ K we defineD(v) = v ∈ |K|
to be a vertex of D(K). We call these V-type vertices. Secondly, for each edge e ∈ K, let

D(e) ∈ |K| be the midpoint of |e|. Then let D(e) be a vertex of D(K), which we call an

E-type vertex. So we have

Vertex(D(K)) = D(Vertex(K)) ∪D(Edge(K)) .

Each face of K is split into four faces as shown in Figure 2.1. It is easy to check that D(K)

is a subdivision of K.

By repeating the process, we obtain a sequence of subdivided complexes K = K0,K1,

K2, . . ., where Kk+1 = D(Kk). For each subcomplex L ⊂ K and k ≥ 0 we have that Lk

is a subcomplex of Kk, i.e., Lk ⊂ Kk. More generally, if ρ : K1 → K2 is a simplicial map

between simplicial surfaces then there is an induced map ρ : Kk
1 → Kk

2 .

2.1.2 Subdivision Schemes

A subdivision scheme is a linear map S : CN(K) → CN(D(K)) for each simplicial surface

K without boundary. Since S is linear we can represent it on a fixed complex K by a :
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D(K)×K → R, where

(Su)v =
∑

w∈K
avwuw for all v ∈ D(K). (2.2)

Here, and often in what follows, we abuse notation and write v ∈ D(K) as shorthand for

v ∈ Vertex(D(K)) when the intended meaning is clear from context. Given u ∈ CN(K),

we form a sequence u = u0, u1, u2, . . . of control nets on refined complexes by uj = Sju ∈
CN(Kj).

Let K be a simplicial surface without boundary. For any integer m > 0 and any vertex

v in the subdivided complex D(K), we define a subcomplex Um(v,K) ⊂ K of the undivided

complex K, called the undivided m−neighborhood, by

Um(v,K) = {s ∈ K : |s| ⊂ |Nm(v,D(K))|} . (2.3)

Figure 2.2 shows some typical undivided m-neighborhoods for the two different types of

vertices and various values of m.

Definition 5. We say a subdivision scheme is local if there is an integer mw > 0 called

the mask width such that for any pair K and K̃ of simplicial surfaces without boundary,

any vertex v ∈ D(K), and any embedding ρ : Umw(v,K)→ K̃, we have

avw =





aρ(v)ρ(w) for all w ∈ Umw(v,K),

0 otherwise .

A local subdivision scheme of mask width mw is given by a collection of vertex masks

and edge masks. These are small simplicial surfaces with weights assigned to the vertices.

To give a complete definition of a local subdivision scheme with mask width mw, there

must be a mask isomorphic to any possible undivided mw-neighborhood Umw(v,K), as in

the examples of Figure 2.2.

Definition 6. A subdivision scheme is affine if for every complex K and vertex v ∈ D(K)

we have
∑

w∈K avw = 1. A local and affine subdivision scheme is called stationary.

For any subcomplex L ⊂ K, we call the set Nmw−1(L) the control set of L since, as

the next proposition shows, for any control net u ∈ CN(K), it is only u on the control set
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m V − type E − type

1

2
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Figure 2.2: Some typical undivided m-neighborhoods Um(v,K) are shown for the two types
of vertices v in the subdivided complex D(K).

of L which affects the subdivided control nets uj = Sju on Lj . Moreover, the subdivided

control nets uj on Lj are independent of the complex K outside of Nmw−1(L). We state

this formally by considering a pair of simplicial surfaces K and K̃, where Nmw−1(L) is

isomorphic to a subcomplex in K̃.

Proposition 7. Suppose the subdivision scheme S is local with mask width mw. Let K

and K̃ be a pair of simplicial surfaces without boundaries, L a subcomplex of K, and ρ

an embedding ρ : Nmw−1(L) → K̃. Then for each u ∈ CN(K) and ũ ∈ CN(K̃) such that

uv = ũρ(v) for each v ∈ Nmw−1(L), we have

ujv = ũjρ(v) for all v ∈ Lj and j ≥ 0,

where uj = Sju and ũj = Sj ũ.

Proof. We prove the equality on a larger domain

ujv = ũjρ(v) for all v ∈ Nmw−1(L
j) and j ≥ 0. (2.4)
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The proof proceeds by induction. The base step is given in the hypothesis. To prove the

inductive step, suppose (2.4) holds for some fixed j. Let v ∈ Nmw−1(L
j+1), then by (2.2)

we have

uj+1v =
∑

w∈Kj

avwu
j
w. (2.5)

By locality, the sum need only be taken over the vertices w ∈ Umw(v,K
j). Since v ∈

Nmw−1(L
j+1) and w ∈ Nmw(v,K

j+1) by (2.3) we conclude w ∈ N2mw−1(L
j+1), but since

w ∈ Vertex(Kj) we get a stronger result, namely w ∈ Nmw−1(L
j). So we have shown that

the stencil Umw(v,K
j) is contained in Nmw−1(L

j), and hence there is an isomorphic stencil

Umw(ρ(v), K̃
j). So by locality, the masks are equivalent avw = aρ(v)ρ(w). Also the inductive

hypotheses shows ujw = ũjρ(w), so (2.5) gives us

uj+1v =
∑

Umw (v,K
j)

avwũ
j
ρ(w) =

∑

Umw (ρ(v),K̃
j)

aρ(v)w̃ũ
j
w̃ = ũj+1ρ(v) .

2.1.3 Subdivision Functions

A subdivision scheme is said to be convergent if for any simplicial surface K and control

net u ∈ CN(K) there exists a continuous function S∞u ∈ C(|K|) such that

sup
v∈Kj

|(Sju)v − S∞u(v)| −→ 0, as j →∞.

We call the limit function S∞u a subdivision function. The subdivision limit operator

S∞ : CN(K) → C(|K|) is linear since S is linear. For a given complex K, let S(K) =

S∞(CN(K)) be the space of subdivision functions on K. A natural basis of CN(K) is

{δv : v ∈ Vertex(K)}, where δv is one at v and zero at all other vertices. Then the subdivision

basis functions φv = S∞δv for v ∈ Vertex(K) form a basis for S(K).

Proposition 7 can immediately be extended to apply to subdivision functions, and we

also give the following corollary.

Proposition 8. Suppose S is a convergent, local subdivision scheme with mask width mw.

Let K and K̃ be a pair of simplicial surfaces without boundaries, L a subcomplex of K, and
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ρ an embedding ρ : Nmw−1(L)→ K̃. Then for each ũ ∈ CN(K̃) we have

S∞(ρ∗ũ) = ρ∗S∞ũ on |L|.

Corollary 9. Let S be a convergent, local subdivision scheme with mask width mw. Then

for any simplicial surface K and any vertex v ∈ K, the support of the basis function φv is
contained in the simplicial neighborhood |Nmw(v,K)|.

Of course we may apply the subdivision process starting on a subdivided complex. Let

K be a simplicial surface and j ≥ 0, then for any u ∈ CN(Kj) we get a subdivision function

S∞u ∈ S(Kj) ⊂ C(|K|) . We denote a basis function at the j-th level of refinement by φjv.

Namely, for any v ∈ Vertex(Kj), let φjv = S∞δjv, where δ
j
v ∈ CN(Kj) is one at v and zero

otherwise. Then for any u ∈ CN(K) and j ≥ 0 we have

S∞u =
∑

v∈K
uvφv =

∑

w∈Kj

(Sju)wφ
j
w . (2.6)

So clearly, S(K) ⊂ S(Kj).

Applying formula (2.6) with u = δv gives a so-called refinement relation for each basis

function φv. More precisely, a refinement relation is a finite expansion of the form

φv =
∑

w∈Kj−1

awφ
j
w .

2.1.4 Examples of Subdivision Schemes

Example: Piecewise Linear Subdivision. The simplest stationary subdivision scheme has

mask width 1. There is a single vertex mask and a single edge mask as shown in the m = 1

line of Figure 2.2. The single vertex in the vertex mask has weight 1, and the weights of

the edge mask are 1/2 at each vertex. It is easy to see that, given a control net u ∈ CN(K),

the scheme converges to the piecewise linear function determined by the control net.

Example: Loop’s Subdivision Scheme. Here we have a mask width of 2. There is a

vertex mask for each valence, and an edge mask. These masks are shown in Figure 1.5,

where the weights on the vertex masks are given by wn for the central vertex and vn for the

adjacent vertices,

wn =
3

8
+

(
3 + 2 cos(2πn )

)2

64
(2.7)
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and

vn =
1− wn
n

. (2.8)

As described in the Introduction, this scheme converges to quartic triangular splines on a

regular grid. More generally, Loop’s scheme is convergent.

Example: Generalized Loop’s Subdivision Scheme. This is a family of stationary sub-

division schemes determined by three parameters. The mask width is 3. As in the case of

Loop’s scheme, there is a vertex mask for each valence. The mask weight for the central

vertex of valence n is given by the parameter wn. The weight assigned to the adjacent ver-

tices in the vertex mask is given by (2.8), to ensure the scheme is affine. For a mask width

of 3, an undivided neighborhood for E-type vertex D(e) is determined by the valences n1

and n2 of the two vertices in e. To keep the edge masks simple we use the 2 masks shown in

Figure 2.3. The mask in Figure 2.3(a) is used when exactly one of the vertices has valence

6 and the other vertex has valence n 6= 6. The mask weights an and bn are parameters, and

cn = (1− an − bn)/2 to ensure that the scheme is affine. The edge mask in Figure 2.3(b) is

used for all the other edges.

PSfrag replacements

an bn

cn

cn

n1 = 6 n2 6= 6

(a)

PSfrag replacements

1/8

1/8

3/83/8

(b)

Figure 2.3: Edge masks for generalized Loop’s subdivision scheme. The edge mask selection
depends on the valences n1 and n2 of the incident vertices. Mask (a) is used when exactly
one of these vertices is extraordinary, mask (b) is used otherwise.
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Figure 2.4: (a) and (b) The regular complex K6 with 2 different regular realizations in R2:
(a) The standard realization, and (b) the equilateral realization. (c) A wedge W . (d) The
n-regular complex Kn, constructed from n copies of W .

2.2 Affine Coordinates

An atlas of coordinate charts is defined on |K| with an isolated set of points deleted. On a

simplicial surface without boundary K, the deleted points are the vertices of valence other

than 6. We call these extraordinary vertices, and denote the set of all such vertices in K by

Ext(K).

The regular complex, which we denote by K6, is an infinite simplicial surface with

Vertex(K6) = Z2,

Edge(K6) =
{
{j, j + e1}, {j, j + e2}, {j, j + e1 + e2} : j ∈ Z2

}
,

and

Face(K6) =
{
{j, j + e1, j + e1 + e2}, {j, j + e2, j + e1 + e2} : j ∈ Z2

}
,

where e1 and e2 are the standard basis vectors in Z2. The given vertex locations define

a geometric realization of K6 in R2 (shown in Figure 2.4(a)), which we call the standard

realization. Other regular realizations of K6 are given by applying an invertible linear

transformation to the vertices of K6. In particular, we have the equilateral realization,

shown in Figure 2.4(b), where all edges have unit length.
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We now construct an atlas of coordinate charts on |K| \ Ext(K). Let ι : L→ K6 be an

embedding of a simplicial sub-surface L ⊂ K into the regular complex, and let ψ : |K6| → R2

be a regular realization of K6. Then the composition

x : |L|◦ |ι|−→ |K6| ψ−→ R2 (2.9)

is a coordinate chart on the coordinate neighborhood |L|◦, where |L|◦ denotes the interior

of |L|. The collection of all such charts forms a C∞-atlas on |K| \ Ext(K), called the affine

atlas. Moreover, the transition functions are affine maps, i.e., linear maps composed with

translations. If a function f ∈ C(K) (i.e., C(|K|) but we drop the |·| to simplify notation)

is class Cr with respect to this atlas, we say it is Cr-away-from-extraordinary-vertices or

f ∈ Cr(|K| \ Ext(K)).

An affine coordinate system (U, x) in which the coordinate images of faces in K are

equilateral triangles with unit length sides is called an equilateral affine coordinate system.

For any affine coordinate neighborhood U there are equilateral affine coordinate charts on

U .

The composition of a polynomial with an affine map is again a polynomial. So the

property that a function is a polynomial on an open neighborhood U of |K| \Ext(K) is well

defined. If (U, x) is an affine coordinate system, and a function f ∈ C(K) is polynomial in

x on x(U) then in any other affine coordinate chart (V, x′) with U ∩ V 6= ∅ the function f

will also be polynomial in x′ on x′(U ∩V ). However, given a neighborhood U and a function

f on U that is affine polynomial on U , it is not necessarily true that there is an extension

to all of |K| \ Ext(K) that is globally polynomial.

2.3 The n−Regular Complex

All the new vertices introduced by “4-to-1” subdivision are valence 6, while the original

vertices correspond to vertices in the subdivided complex of the same valence. So for any

vertex v of valence n 6= 6 in a simplicial surface K, the neighborhoods N2k−1(v,K
k) of v in

the subdivided complexes have a single vertex of valence n, and all the other vertices have

valence 6. The n-regular complex is an infinite simplicial complex with a single vertex of

valence n surrounded by valence 6 vertices.
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Define a wedge W ⊂ K6 by

W = {s ∈ K6 : j1 ≥ 0 and 0 ≤ j2 ≤ j1 for all (j1, j2) ∈ s}, (2.10)

as shown in Figure 2.4(c). For each valence n ≥ 3, we define the n−regular complex Kn as

follows: Let Wi for i ∈ Zn, denote n disjoint copies of W , and denote the vertices of Wi by

(i, j) for i ∈ Zn and j ∈ Vertex(W ), where Zn is the group of integers modulo n. We then

identify vertices by the equivalence relation

(i, (j, 0)) ≡ (i− 1, (j, j)) for all j ≥ 0 and i ∈ Zn ,

the subtraction being taken modulo n. The resulting complex Kn is a simplicial surface

without boundary (as in Figure 2.4(d)). The central vertex, denoted by v0, has valence n

and all other vertices have valence 6.

The simplicial automorphisms of Kn are generated by a rotation ρ

ρ : (i, j) 7→ (i+ 1, j) (2.11)

and a reflection f

f : (i, j) 7→ (−i, f̃(j)), (2.12)

where f̃ is the reflection on W . Actually, for n = 6 the group generated by ρ and f is a

proper subgroup of the automorphism group, namely the isotropy subgroup of v0 ( i.e., the

automorphisms that leave v0 fixed). However, we call the group generated by ρ and f the

“automorphism group” of Kn.

The n−regular complex is self similar under subdivision. We first define the contraction

map on the wedgeW . The vertices ofW are points of R2 that define a geometric realization

of W , and therefore we have a geometric realization of D(W ). The map c : Vertex(W ) →
Vertex(D(W )) given, in terms of this realization, by

c(x) = x/2

is a simplicial isomorphism. Applying c to each wedge Wi of Kn extends c to a simplicial

isomorphism

c : Kn → D(Kn),
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which we call the contraction map.

Contraction induces a piecewise linear homeomorphism |c| : |Kn| → |D(Kn)|, which

when composed with the identification induced by subdivision ι : |D(Kn)| → |Kn|, results
in a piecewise linear homeomorphism on |Kn|

c : |Kn| → |Kn| . (2.13)

In an abuse of notation the map (2.13) is also denoted by c.

The contraction map (2.13) generates an additive action of the group Z on |Kn|. Sim-

ilarly, the contraction map c and the rotation ρ generate an action of the group Z × Zn

on |Kn|. Given a group G acting on a |Kn| \ v0, for g ∈ G, let φg be the corresponding

transformation of |Kn| \ v0, for instance, φj = cj or φj,k = cj ◦ ρk in our two examples. A

fundamental region, with respect to the action, is an open, connected region Ω ⊂ |Kn| such
that (i) φgΩ ∩ Ω = ∅ for all g ∈ G other than the identity, and (ii) the union ∪φgΩ over all

g ∈ G is all of |Kn| \ v0 ,where A denotes the closure of A. For example, consider the action

of Z on |K| generated by c, and define the annular simplicial surface Ω0 ⊂ Kn by

Ω0 = N2(v0,Kn) \N1(v0,Kn), (2.14)

using definition (2.1). Then the region |Ω0|◦, shown in Figure 2.5, is a fundamental region

with respect to the action. Let Ωj = cjΩ0 ⊂ Kj
n for j ≥ 0, and for j < 0 define the

subcomplex Ωj ⊂ Kn by |Ωj | = (cj)−1(|Ω0|). For each face T ∈ Kk
n, we define an integer

jT called the annulus index of T as follows: If T /∈ N1(v0,K
k
n) , we let jT be the unique

integer satisfying |T | ⊂ |Ωj |, and if T ∈ N1(v0,K
k
n), we let jT = k. Notice we have the

identity jT ≤ k.

2.4 The Subdivision Map and the Characteristic Map

The subdivision map represents the operation of stationary subdivision near an extraordi-

nary vertex. It has been central in the analysis of subdivision schemes. Let S be a local

subdivision scheme with mask widthmw. When applying subdivision on the n−regular com-

plex Kn, the control net on Nm(v0,Kn) determines the control net on N2m−mw+1(v0,K
1
n).

When m ≥ mw there is a simplicial embedding of Nm(v0,Kn) into N2m−mw+1(v0,K
1
n) that
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Figure 2.5: Kn \ v0 is decomposed into annuli. The outer complex is Ω0 ⊂ Kn and its
interior |Ω0|◦ is a fundamental annulus.
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fixes v0. Thus, the control nets over the m−neighborhoods at successively finer levels,

Nm(v0,K
k
n) for k = 0, . . ., are obtained by repeatedly applying a fixed linear transformation

to the initial control net on Nm(v0,Kn). This linear transformation is the subdivision map.

For any m ≥ mw we define the subdivision map Sn,m as the linear transformation

Sn,m = c∗S : CN(Nm(v0,Kn))→ CN(Nm(v0,Kn)) .

Usually we are concerned only with the special case Sn,mw , which we will write more simply

as Sn. In Section 2.4.1, we show how Sn,m is completely determined by Sn. For a fixed

scheme and valence n, we denote the distinct eigenvalues of Sn by λ0, . . . , λN , ordered so

that |λ0| ≥ |λ1| ≥ · · · ≥ |λN |.
Let u be an eigenvector of Sn with eigenvalue λj , and let φ = S∞u be the corresponding

limit function defined on |N1(v0,Kn)|. We derive an identity for φ we call the contraction

identity. Applying S∞ to the eigenvalue identity λju = Snu, we get

λjS
∞u = S∞Snu = S∞c∗Su.

After applying Proposition 8, this becomes λjS
∞u = c∗S∞u, which can be expressed in

terms of φ as

φ(c(z)) = λjφ(z) for all z ∈ |N1(v0,Kn)|. (2.15)

The derivation of the proceeding paragraph can be extended to generalized eigenvectors

of Sn. Let J = U−1SnU be the Jordan normal form of Sn, with diagonal elements ordered

by non-increasing magnitude, i.e., so that |Jjj | ≥ |Jkk| for all j ≤ k . The columns of U ,

(u0, u1, . . . , uN ) = U , are generalized eigenvectors of Sn. Let Φ = (φ0, φ1, . . . , φN ) = S∞U

denote the row vector of limit functions, each entry given by φi = S∞ui. Applying the limit

operator to the identity UJ = SnU , we compute the following:

S∞(UJ) = S∞(SnU) = S∞c∗SU = c∗S∞U.

Expressing this in terms of Φ we have

Φ(c(z)) = Φ(z) · J for all z ∈ |N1(v0,Kn)|. (2.16)
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The components of Φ form a basis of the space of subdivision functions on |N1(v0,Kn)|.
Namely, given u ∈ CN(Nmw(v0,Kn)) defining the subdivision function f = S∞u, we have

f = S∞u = S∞UU−1u = Φ ·A, (2.17)

where A = U−1u.

If S is a convergent stationary subdivision scheme, then for every valence n, the dominant

eigenvalue λ0 is one. It is algebraically simple, and all other eigenvalues have magnitudes

strictly less than one. The sub-dominant eigenvalue λ1 determines the C1-smoothness of

the subdivision functions. This was first made precise in the work of in Reif [16]. The key

tool that he introduced was the characteristic map.

Definition 10. Suppose S is a stationary subdivision scheme. For a fixed valence n, suppose

the distinct eigenvalues of the subdivision map λ0, λ1, . . . , λN , ordered by non-increasing

magnitude, satisfy the following conditions:

(i) The dominant eigenvalue λ0 is one, and is an algebraically simple eigenvalue.

(ii) The sub-dominant eigenvalue λ1 is real and positive, and is of geometric and algebraic

multiplicity 2.

(iii) The other eigenvalues, λj for j > 1, are of magnitude strictly less than λ1.

Let u1, u2 ∈ CN(Nmw(v0,Kn)) be linearly independent λ1−eigenvectors of Sn. Then the
R2-valued control net u = (u1, u2) defines a continuous map

S∞u : |N1(v0,Kn)| → R2 ,

called a characteristic map.

This definition is a slight modification from that found in Reif [16]. Zorin extended the

definition considerably in [25] and [23], relaxing the condition on the algebraic and geometric

multiplicities of the sub-dominant eigenvalue.

An eigen-analysis of the subdivision map can be made using the discrete Fourier trans-

form. This technique shows that Loop’s scheme has characteristic maps for all valences, see

Loop [13], Schwietzer [18], or Zorin [25].
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2.4.1 Characteristic Maps on |Kn|

We will show how an eigen-structure of the smallest subdivision matrix Sn,mw determines

the eigen-structure of all larger subdivision matrices Sn,m. Applying this result, we extend

the characteristic maps to all of |Kn|.
Fix the valence n and, to simplify notation, letNm =Nm(v0,Kn). For anym

′ > m ≥ mw

we can decompose CN(Nm′) into CN(Nm)⊕ Vm′,m, where

Vm′,m = {u ∈ CN(Nm′) : uv = 0 for all v ∈ Nm}. (2.18)

With respect to this decomposition Sm′ , has the following block form:

Sm′ =


Sm 0

∗ ∗


 . (2.19)

So restricting an eigenvector of Sm′ to Nm gives an eigenvector of Sm.

For any m > mw, notice that Vm,mw is a space of “nilpotent” vectors. That is, for any

v ∈ Vm,mw the iterates Skmv are zero for large enough k. This follows since

SmVm,s ⊂ Vm,2s−mw+1, (2.20)

so the region of zeros keeps growing as one repeatedly applies Sm. Recall that a square

matrix N is nilpotent if Nk = 0 for some k.

Theorem 11. For any m > mw, let J = U−1SnU be the Jordan normal form of the

subdivision matrix Sn. Then

Sn,m = Ũ


J 0

0 N


 Ũ−1 , where Ũ =


U 0

∗ I


 ,

and where N is nilpotent and I is an identity matrix.

Some implications of this theorem for any m > mw follow:

(i) The non-zero spectrum of Sn,m coincides with the non-zero spectrum of Sn.

(ii) The algebraic and geometric multiplicities of any non-zero eigenvalue in the spectrum

of Sn,m are independent of m.
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(iii) An eigenvector u ∈ CN(Nmw) with non-zero eigenvalue λ has a unique extension to

a λ-eigenvector ũ ∈ CN(Nm) of Sn,m. Indeed if ũ and ˜̃u ∈ CN(Nm) are both λ-

eigenvectors extending u, then ũ − ˜̃u is a λ-eigenvector, but ũ − ˜̃u ∈ Vm,mw , so by

Theorem 11 it is nilpotent.

As a consequence of (iii), each eigenvector can be extended uniquely to all of Kn. In

particular, we can extend the characteristic maps.

Definition 10′. Suppose for a fixed valence n, the subdivision scheme satisfies the conditions

of Definition 10. Let u = (u1, u2) be a pair of linearly independent λ1−eigenvectors of Sn.
Then by comment (iii) there are unique extensions ũ = (ũ1, ũ2) to control nets on all of Kn.

We call the generated subdivision function

S∞ũ : |Kn| → R2

a characteristic map.

Proof of Theorem 11. From (2.20) we see that Vm,mw is an Sm-invariant and nilpotent sub-

space. So we can block diagonalize Sn,m via a similarity transformation as follows:

Sn,m = Ũ


∗ 0

∗ N


 Ũ−1 , where Ũ =


∗ 0

∗ I




and N is nilpotent.

Next we show that given a cycle of k generalized λ−eigenvectors, u1, u2, . . . , uk ∈
CN(Nmw), corresponding to a (k × k)-Jordan block of Sn, we can construct extensions

ũ1, ũ2, . . . , ũk ∈ CN(Nm) that from a cycle of generalized λ−eigenvectors of Sn,m. This will
complete the proof.

A cycle of generalized eigenvectors ui of Sn,mw satisfy

Sn,mwui = λui + ui−1 for i = 1, . . . , k,

with u0 = 0. We define a doubly indexed sequence of control nets uji ∈ CN(Nmj
), for

i = 0, . . . , k and j ≥ 0. The sizes of the expanding neighborhoods are given by the recurrence
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mj+1 = 2mj −mw + 1 with m0 = mw. The control nets are defined inductively, with base

definitions u0i = ui and u
j
0 ≡ 0, by the rule

uj+1i = 1
λ

(
c∗Suji − u

j+1
i−1

)
for i = 1, . . . , k. (2.21)

For each j > 0 we prove the following statements:

uji ≡ uj−1i on Nmj−1 , (2.22)

and

Smj
uji = λuji + uji−1 for i = 1, . . . , k. (2.23)

We prove (2.22) and (2.23) by induction on j, assuming they are true for some fixed value

of j and proving they are true at j + 1.

Proof of (2.22).

We prove (2.22) at j + 1 inductively on i. The base step is trivial, uj+10 ≡ uj0 ≡ 0.

Assuming (2.22) holds for a fixed i− 1 and j + 1, we must show that it holds also for

i and j + 1. From (2.23) we have the following identities on Nmj

λuji + uji−1 = c∗Suji

uji =
1
λ

(
c∗Suji − u

j+1
i−1

)
by (2.22) at i− 1 and j + 1

= uj+1i by (2.21).

Proof of (2.23).

Fix i = 1, . . . k. From (2.23) at i and j, we have c∗Suji = λuji +u
j
i−1 on Nmj

. Applying

subdivision and contraction yields

c∗S(c∗Suji ) = λ(c∗Suji ) + c∗Suji−1 on Nmj+1
.

From (2.21) c∗Suji = λuj+1i +uj+1i−1 onNmj+1
, so substituting this into the parenthesized

terms above yields

c∗S(λuj+1i + uj+1i−1 ) = λ(λuj+1i + uj+1i−1 ) + c∗Suji−1 on Nmj+1

c∗Suj+1i = λuj+1i + uj+1i−1 +
1
λc
∗S
(
uji−1 − u

j+1
i−1

)
.
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By (2.22), the parenthesized term above is 0 onNmj
, and therefore c∗S

(
uji−1 − u

j+1
i−1

)
≡

0 on Nmj+1
proving (2.23).

2.4.2 Equivariant Characteristic Maps

The n-regular complex is symmetric, and in this section we show that there are special

characteristic maps which share these symmetries.

The rotation ρ (2.11) and reflection f (2.12) on Kn generate a symmetry group 〈ρ, f〉 of
automorphisms of Kn. An isomorphic group 〈ρ̃, f̃〉 acting on R2 is generated by a clockwise

rotation ρ̃ through an angle 2π/n, and a reflection f̃(x, y) = (x,−y). The correspondence

between generators induces a group isomorphism g 7→ g̃ for any g ∈ 〈ρ, f〉.

Definition 12. A characteristic map χ : |N1(v0,Kn)| → R2 is equivariant if the following

diagram commutes for all g ∈ 〈ρ, f〉.

|N1(v0,Kn)| χ−−−−→ R2

g

y
yg̃

|N1(v0,Kn)| −−−−→
χ

R2
(2.24)

Using a discrete Fourier transform, Peters and Reif [14] show that if the characteristic

maps are injective, then equivariant characteristic maps exist. Figure 2.6 shows an equiv-

ariant control net on N2(v0,Kn) for Loop’s subdivision scheme. It generates an equivariant

characteristic map.

2.5 Subdivision Smooth Structure

Reif introduced the concept of the characteristic map and proved the following key theorem

in [16].

Theorem 13 (Reif). If all characteristic maps are regular and injective then subdivision

surfaces are C1-surface for almost every control net.
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Figure 2.6: A Loop subdivision control net for an equivariant characteristic map on Kn.
Not all control values are shown, but the control net itself is equivariant, so the remaining
control values can be computed by applying a rotation of angle θ = 2π

n .
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We develop a parallel theory in this section. Suppose S is a stationary subdivision scheme

(i) that generates Cr-subdivision functions away-from-extraordinary-vertices, (ii) that has

characteristic maps for all valences, and (iii) whose characteristic maps are injective and

regular on |K| \ Ext(K). In Proposition 15 we show that the characteristic maps can be

used to define a Cr-atlas on any simplicial complex |K| without boundary. We then show

in Proposition 17 that the subdivision functions are of class C1(|K|) with respect to this

atlas. From Propositions 15 and 17 and the basic theory of differentiable manifolds (e.g.

[2]), we get the following corollary.

Corollary 14. Given an R3 valued control net on a simplicial surface without boundary, if

the generated subdivision function is injective and everywhere of full rank then its image is

a C1-surface embedded in R3.

Loop’s subdivision functions are C2-away-from-extraordinary-vertices, and characteristic

maps exist for all valences. In his thesis [25], Zorin showed that the characteristic maps are

regular and injective for all valences. Thus Loop’s subdivision scheme determines a C2-atlas

on any simplicial surface |K| without boundary, and Loop’s subdivision functions are C1.

Suppose S is a stationary subdivision scheme such that for every valence there are

injective characteristic maps. For each vertex v in a simplicial surface K without boundary,

we define a characteristic coordinate system on |K| centered at v. Recall, a coordinate

system on an n-dimensional manifold M is a pair (U, φ), where U is an open subset of

M and φ : U → Rn is continuous and injective. We construct a coordinate chart on

|N1(v,K)|◦. Let ιv be an identification between N1(v,K) and N1(v0,Kn), where n is the

valence of v, and let χ : |N1(v0,Kn)| → R2 be a characteristic map. The composition

ψv = χ ◦ iv : |N1(v)|◦ → R2 is a characteristic coordinate chart,

ψv : |N1(v)|◦ ιv−→ |N1(v0,Kn)| χ−→ R2. (2.25)

We compute the characteristic coordinate representation of the contraction map, which

we use often in the following chapters. We define a contraction map near a vertex v, denoted
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cv : |N1(v)| → |N1(v)|, by cv = ι−1v ◦ c ◦ ιv. In characteristic coordinates (2.25) we have

cv(y) = ψv ◦ cv ◦ ψ−1v = χ ◦ c ◦ χ−1(y) = λ1χ(χ
−1(y)) by (2.15)

= λ1y. (2.26)

Recall a Cr-atlas on a manifold M is a collection {(Uα, ψα)} of coordinate systems on

M such that the coordinate neighborhoods {Uα} cover M , and for any pair (U1, ψ1) and

(U2, ψ2) of coordinate systems, the transition function ψ1 ◦ψ−12 : ψ2(U1∩U2)→ ψ1(U1∩U2)
is a Cr-diffeomorphism. A characteristic map is regular on |K| \ Ext(K) if its Jacobian is

non-singular when expressed locally in affine coordinates.

Proposition 15. Suppose S is a stationary subdivision scheme such that: (i) subdivision

functions are Cr-away-from-extraordinary-vertices and (ii) there are characteristic maps

which are injective and regular on |K| \Ext(K) . Then for any simplicial surface K without

boundary, the collection of characteristic charts {(|N1(v)|◦, ψv)} for v ∈ Vertex(K) is a Cr-

atlas on |K|. Furthermore, the atlas is Cr-compatible with the affine coordinate charts (2.9)

and with the subdivision smooth structure of D(K).

Definition 16. A stationary subdivision scheme S satisfying the conditions of Proposi-

tion 15 is called a Cr-subdivision scheme, and the Cr-atlas of characteristic charts

{(|N1(v)|◦, ψv)} on a simplicial surface K without boundary is called the subdivision

smooth structure on |K|.

Notice the subdivision surfaces of a Cr-subdivision scheme are not necessarily Cr-

surfaces.

Proof of Proposition 15. The neighborhoods |N1(v)|◦ clearly cover |K|. Fix a vertex v ∈ K
and a characteristic chart ψv = χ ◦ ιv. We need to show that the transition functions

τ = ψv ◦ ψ−1 : ψ(U ∩ |N1(v)|◦)→ R2 (2.27)

are Cr with Cr inverses for various charts ψ : U → R2. We consider four different kinds of

charts:
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(i) Characteristic chart centered at v. Suppose ψ̃ = χ̃ ◦ ιv is another characteristic chart

centered at v using a different characteristic map. Let u and ũ be the λ1-eigenvectors

of Sn that generate the characteristic maps, i.e., χ = S∞u and χ̃ = S∞ũ. Since the

λ1-eigenspace of Sn is 2-dimensional, u = ũA for some non-singular 2 × 2 matrix A.

Thus χ = S∞u = S∞ũ ·A = χ̃ ·A, and so

τ(z) = ψv ◦ ψ̃−1(z) = χ ◦ χ̃−1(z)

= χ̃(χ̃−1(z)) ·A

= z ·A.

This shows that the transition function τ is linear and therefore smooth.

Now consider the other case, where ψ̃v = χ ◦ ι̃v is composed of an identification ι̃v,

possibly different than ιv, and the characteristic map χ. Let σ = ιv ◦ ι̃−1v , and extend it

to an isomorphism on all of Kn. We reduce this case to that of the previous paragraph

by writing ψ̃ = χ̃ ◦ ιv, with χ̃ = χ ◦ σ. Then by Proposition 8 we have

χ̃ = σ∗S∞u = S∞σ∗u . (2.28)

A simple calculation shows that σ∗u is a λ1-eigenvector Sn, and therefore (2.28) is a

characteristic map.

(ii) Affine chart. Since characteristic charts are defined by subdivision, they are Cr on

|K|\Ext(K). Since the characteristic maps, expressed in affine coordinates, are regular

on |K| \ Ext(K), their inverses are Cr by the inverse function theorem.

(iii) Characteristic chart centered at a vertex adjacent to v. Let e = (v, w) ∈ Edge(K), let

(|N1(w)|◦, ψw) be a characteristic coordinate chart centered at w, and let τ = ψv ◦ψ−1w
be the transition function. There is an affine coordinate system (|N1(v)∩N1(w)|◦, ψ̃),
and we can write τ as a composition

τ = (ψv ◦ ψ̃−1) ◦ (ψw ◦ ψ̃−1)−1.

The operands of the composition are Cr as shown in (ii) above, so τ is also Cr.
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(iv) Characteristic chart ofD(K). It suffices to consider a specific ψD(v). The identification

ιv induces an isomorphism ιD(v) : N1(v,D(K))→ N1(v0, D(Kn)). Hence we consider

the characteristic chart ψD(v) = χ ◦ c−1 ◦ ιD(v). Then we have

ψv ◦ ψ−1D(v) = χ ◦ c−1 ◦ χ−1. (2.29)

As in the computation of (2.26) we have ψv ◦ ψ−1D(v)(z) = λ−11 z.

Proposition 17. Suppose S is C1-subdivision scheme. Then the subdivision functions are

C1 with respect to the subdivision smooth structure.

Proof. Let K be a simplicial surface without boundary and let f ∈ S(K). Clearly f ∈
C1(K \ Ext(K)), so we need only analyze f near extraordinary vertices. Let v ∈ Ext(K) be

a vertex of valence n. Let J = U−1SnU be the Jordan form of Sn with distinct eigenvalues

1 < λ1 < |λ2| ≤ · · · ≤ |λN | along the diagonal in non-increasing order of magnitude, and let

Φ = (1, φ1, φ2, . . . , φN ) = S∞U , a basis of subdivision functions on N1(v0,Kn). We apply

subdivision k0 times so that Nmw(v,K
k0) is isomorphic to Nmw(v0,Kn). We express f on

|N1(v,Kk0)|◦ in terms of the characteristic coordinate y = (φ1, φ2),

f(y) = Φ(y) ·A (2.30)

for some coefficient vector A. Differentiating (2.30) with respect to a coordinate variable

yi, and evaluating at ck(y) we get

∂f

∂yi
(ck(y)) =

∂Φ

∂yi
(ck(y)) ·A. (2.31)

To continue, we derive a contraction identity for ∂Φ
∂yi

by differentiating the contraction

identity (2.16) and using (2.26) to get

∂Φ

∂yi
(c(y)) = λ−11

∂Φ

∂yi
(y) · J. (2.32)

Substituting this into (2.31) we get

∂f

∂yi
(ck(y)) = λ−k1

∂Φ

∂yi
(y) · JkA. (2.33)
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Next we split off the first few components of Φ, J and A. Let Φ3(y) be all but the first

three components of Φ, i.e., Φ(y) =
(
1, y1, y2,Φ3(y)

)
, similarly let A = (a0, a1, a2, A3)

T .

Let J3 be the minor of J corresponding to all but the first 3 rows and columns, i.e., J =

diag(1, λ1, λ1, J3). We can then write the partial derivatives of Φ as

∂Φ

∂yi
= (0, δi,1, δi,2,

∂Φ3
∂yi

),

and substituting this into (2.33) we get

∂f

∂yi
(ck(y)) = ai + λ−k1

∂Φ3
∂yi

(y) · Jk3A3 . (2.34)

We will show that in the limit as y → 0, we have ∂f
∂yi

(y) = ai. Consider a fundamental

annulus Ω0 as in (2.14)

∥∥∥ ∂f
∂yi

(·)− ai
∥∥∥
L∞(ckΩ0)

=
∥∥∥ ∂f
∂yi

(ck(·))− ai
∥∥∥
L∞(Ω0)

= λ−k1

∥∥∥∂Φ3
∂yi

(·) · Jk3A3
∥∥∥
L∞(Ω0)

by (2.34).

Now ∂Φ3
∂yi

is continuous over Ω0, so

∥∥∥ ∂f
∂yi

(·)− ai
∥∥∥
L∞(Ωk)

≤ Cλ−k1 ‖Jk3A3‖. (2.35)

The spectral radius of J3 is |λ2| < λ1, so there is a matrix norm such that ‖J3‖ < λ1, and

hence
∥∥∥ ∂f
∂yi

− ai
∥∥∥
L∞(Ωk)

≤ C

(‖J3‖
λ1

)k
‖A3‖ . (2.36)

In particular, the left-hand side converges to 0 as k →∞ so f is C1 at v.

2.6 A Little More Smoothness

In Section 2.5 we constructed a Cr-smooth structure on a simplicial surface |K| using the

characteristic maps of the subdivision scheme. Now we squeeze a little more smoothness out

of this construction. This allows us to define a proper subset of Cr(K), containing “smother”

functions, although this set is not Cr+1(K). The additional smoothness is characterized by

the property that the order r derivatives are locally Lipschitz.
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Recall that a map f : U → Rm on a domain U ⊂ Rn is Lipschitz if there exists a

constant C such that

‖f(x)− f(y)‖ ≤ C‖x− y‖ for all x, y ∈ U .

We say f is locally Lipschitz if there is a neighborhood Ux of each point x ∈ U such that

f is Lipschitz on Ux. We denote, by Cr,1loc(U), the class of functions f ∈ Cr(U) such that

Dαf is locally Lipschitz for all |α| = r. ( The “1” in the notation reflects the fact that

Lipschitz continuous functions are Hölder continuous with Hölder exponent 1.) Some prop-

erties of locally Lipschitz functions which follow immediately from the definition are listed:

(i) differentiable functions are locally Lipschitz, (ii) products and sums of locally Lipschitz

functions are locally Lipschitz, and (iii) the composition of locally Lipschitz functions is

locally Lipschitz.

We next give a detailed multi-index version of the chain rule and then show that the class

Cr,1loc is closed under composition. We use standard multi-index notation. That is, α ∈ Zn+ is

a multi-index of non-negative integers α = (α1, α2, . . . , αn), and x
α =

∏n
1 x

αi
i , α! =

∏n
1 αi!,

and |α| =∑n
1 αi. Partial derivatives are represented by Dα, where D = ( ∂

∂x1
, ∂
∂x2

, · · · , ∂
∂xn

).

Also we write α ≤ β if αi ≤ βi for each i, and define
(
α
β

)
= α!

β!(α−β)! for β ≤ α.

Proposition 18 (Chain Rule). Suppose τ : Ω → Ω′ is Cr-map from a domain Ω in Rn

into a target Ω′ in Rm, and suppose f ∈ Cr(Ω′). Then for any multi-index α ∈ Zn+, such

that 1 ≤ |α| ≤ r we have

Dα(f ◦ τ) =
∑

1≤|β|≤|α|
(Dβf ◦ τ) ·Mταβ , (2.37)

where

Mταβ =
∑

cγµαβ (Dγ1τµ1) · · · (Dγ|β|τµ|β|) , (2.38)

the sum is taken over ordered sequences of multi-index pairs (γi, µi) ∈ Zn+×Zm+ for i = 1 to

|β|. The multi-index pairs satisfy

γ1 + · · ·+ γ|β| = α, with |γi| ≥ 1 ,

and

µ1 + · · ·+ µ|β| = β, with |µi| = 1 .
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The constants are cαβγµ are unique positive integers that are independent of τ and f .

Lemma 19. The composition of functions in Cr,1
loc is in C

r,1
loc.

Proof. Let g : U → V and f : V → W be elements in Cr,1
loc. Since f ◦ g is clearly in Cr(U),

it suffices to show that Dα(f ◦g) is locally Lipschitz for every multi-index α ∈ Zn+ such that

|α| = r. Applying the chain rule to the composition yields the expansion (2.37). The result

then follows from properties (i), (ii) and (iii) above.

In Section 2.5 we defined a Cr-atlas on |K| which determines a class of Cr-functions

on the manifold |K|. Manifolds can be constructed with other types of structure, resulting

in different classes of functions. The structure is not completely arbitrary but must have

a basic set of properties: properties that any reasonable set of transition functions would

have to satisfy. These properties are formalized in the definition of a pseudo-group of trans-

formations. For references on this general construction of manifolds see either Chapter 3 of

Thurston [22] or Chapter 1 of Kobayashi and Nomizu [11].

Definition 20. A pseudo-group of transformations on Rn is a set G of homeomorphisms

between open sets of Rn satisfying the following conditions:

(i) The domains of the elements g ∈ G cover Rn.

(ii) The restriction of an element g ∈ G to an open subset of its domain is also in G.

(iii) The composition g1 ◦ g2 of two elements of G, when defined, is in G.

(iv) The inverse of an element in G is also in G.

(v) If g : U → V is a homeomorphism between open sets of Rn, and U is covered by an

open collection Uα such that the restriction g|Uα ∈ G, then g ∈ G.

A pair of coordinate charts (Ui, ψi) and (Uj , ψj) are said to be G-compatible if the

transition function τij = ψi ◦ ψ−1j is an element of G. A G-manifold is a topological space

with an atlas of G-compatible charts.
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Let Γr,1loc(R
n) denote the space of homeomorphisms f : U → V between domains in Rn

such that f ∈ Cr,1loc(U) and f−1 ∈ Cr,1loc(V ).

Proposition 21. For r ≥ 1 the collection Γr,1
loc
(Rn) is a pseudo-group of transformations

on Rn.

Proof. Condition (iii) of Definition 20 follows from Lemma 19, while all the other conditions

follow trivially from the definition of Γr,1loc(R
n).

Proposition 22. In Proposition 15 we can replace Cr with Cr,1loc.

Definition 23. A stationary subdivision scheme S satisfying the conditions of Proposi-

tion 22 is called a Cr,1
loc-subdivision scheme.

Examining the proof of Proposition 15, one sees that the same proof still works once we

show that the Inverse Function Theorem holds for Cr,1
loc-maps.

Theorem 24 (Inverse Function Theorem). Suppose f : U → V is a Cr,1
loc(U) homeo-

morphism between domains in Rn, with r ≥ 1, and the Jacobian of f does not vanish on U .

Then f−1 is in Cr,1loc(V ).

Proof. The inverse function theorem for Cr maps shows that f−1 ∈ Cr(V ), and that the

Jacobian of f−1 is given by

Df−1(y) = Df(f−1(y))−1.

Since the inverse function f−1 is in Cr(V ), the Jacobian Df is in Cr−1,1loc (U), and matrix

inversion is smooth, we conclude that f−1 is in Cr,1loc(V ) by Lemma 19.

Theorem 25. Loop’s subdivision scheme is a C2,1loc -subdivision scheme.

Proof. We must show that the hypotheses of Proposition 22 are satisfied. That is, Loop’s

subdivision functions are C2,1loc -away-from-extraordinary-vertices, and that for all valences,

there are characteristic maps which are injective and regular. Loop’s subdivision functions

are locally triangular quartic box splines away from an extraordinary vertex. Therefore they

are C2 away from an extraordinary vertex and piecewise C∞. So they are C2,1loc -away-from-

extraordinary-vertices.
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We have already mentioned that characteristic maps exist for all valences and are injec-

tive and regular.

2.7 Some Geometric Properties of Neighborhoods

This section contains some technical results, which we will need in Chapter 4, about the

geometry of certain neighborhoods in the n-regular complex. For each valence n, we fix an

equivariant characteristic map y : |Kn| → R2, and use it as a global chart on Kn. Let λ

be the sub-dominant eigenvalue of the subdivision map of valence n. We denote, by the

subscript Λ, geometric properties of domains in Kn with respect to the euclidean metric

in characteristic coordinates. For example, we define the diameter of a set Ω ⊂ |Kn| by
diamΛΩ := sup{|y(p)− y(q)| : p, q ∈ Ω}.

Recall, from Section 2.3, the definition of the annular simplicial complexes Ωj and the

annulus index jT for a face T ∈ Kk
n. Let W ⊂ Kn be a fixed wedge of Kn, let Wj =

W j ∩ Ωj ⊂ Kj
n for j ≥ 0, and let Wj =W ∩ Ωj ⊂ Kn for j < 0.

Proposition 26. For any fixed integer d ≥ 0, there exists constants C0 through C3 such

that for any T ∈ Face(Kk
n) and k ≥ 0 we have

C0λ
2jT (12)

2(k−jT ) ≤ areaΛ|NdT | ≤ C1λ
2jT (12)

2(k−jT ) (2.39)

and

C2λ
jT (12)

k−jT ≤ diamΛ|NdT | ≤ C3λ
jT (12)

k−jT . (2.40)

Proof. We prove the proposition by successively reducing the collection of faces for which

we must show that the bounds (2.39) and (2.40) are satisfied. Since the coordinate system

is rotational equivariant we need only show (2.39) and (2.40) are satisfied for faces T ∈W k

and k ≥ 0. The contraction map c :W k →W k+1 is a simplicial isomorphism and a dilation

in characteristic coordinates by (2.26). Therefore we get the identities

areaΛ|Nd(cT )| = λ2 areaΛ|NdT | and diamΛ|Nd(cT )| = λ diamΛ|NdT | (2.41)

for any face T ∈W k and k ≥ 0. Thus we need only show that (2.39) and (2.40) are satisfied

for faces T ∈W and k = 0. Let k′ be a positive integer such that 2k
′ ≥ d+ 1, and consider
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the subcomplex N2k′ (v0,W ) ⊂ W . Since there are only finitely many faces in N2k′ (v0,W )

we can choose constants C0 through C3 such that (2.39) and (2.40) are satisfied for any

face T ∈ N2k′ (v0,W ). Thus it suffices to show that (2.39) and (2.40) are satisfied for faces

T ∈ W \ N2k′ (v0,W ). For each face T ∈ W \ N2k′ (v0,W ) we have jT ≤ −k′ and thus

c−jT T ∈ Face(W−jT
0 ). Therefore by (2.41) it suffices to show (2.39) and (2.40) are satisfied

for every face T ∈ W k
0 and k ≥ k′, that is, we must find constants C0 through C3 so that

for any such T we have the inequalities

C0(
1
2)
2k ≤ areaΛ|NdT | ≤ C1(

1
2)
2k (2.42)

and

C2(
1
2)
k ≤ diamΛ|NdT | ≤ C3(

1
2)
k . (2.43)

Notice that |NdW
k′
0 | is an affine coordinate neighborhood, containing |NdT | for every

T ∈ W k
0 and k ≥ k′. In affine coordinates all the neighborhoods NdT are similar, and in

particular we have the identities areaA|NdT | = C(12)
2k and diamA|NdT | = C ′(12)

k where the

subscript A is used to refer to computations in the affine coordinate system. Let y = τ(x)

be the transition function from the affine coordinates to characteristic coordinates.

To show (2.42) we express areaΛ|NdT | as an integral in x-coordinates by

areaΛ|NdT | =
∫

|NdT |
det
∣∣∣∂τ
∂x

(x)
∣∣∣dx .

Therefore for any T ∈W k
0 and k ≥ k′ the following inequality holds

C(12)
2kmin det

∣∣∣∂τ
∂x

(x)
∣∣∣ ≤ areaΛ|NdT | ≤ C(12)

2kmaxdet
∣∣∣∂τ
∂x

(x)
∣∣∣ ,

where the minimum and maximum are taken over x ∈ |Nd(W
k′
0 )|, proving (2.39).

The lower bound in (2.40) follows from (2.39). To see this consider a bounded domain

Ω ⊂ R2. Let p, q ∈ Ω be a diameter of Ω, that is, diamΩ = |p− q|. Then Ω is contained the

ball of radius diam Ω centered at p. So we have a weak form of the diametric inequality,

areaΩ ≤ π(diamΩ)2 .

Combining this with (2.39) yields the left side of (2.40) with C2 =
√
C0/π.
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To prove the upper bound in (2.40) let T ∈W k
0 with k ≥ k′ and let x0 and x1 be affine

coordinates of a diameter, that is, diamΛ(NdT ) = |τ(x0)− τ(x1)|. Applying the mean value

inequality we get

diamΛ(NdT ) = |τ(x1)− τ(x2)|

≤
∥∥∥∂τ
∂x

∥∥∥ |x1 − x0| ≤ C ′
∥∥∥∂τ
∂x

∥∥∥ (12)
k , (2.44)

where ∥∥∥∂τ
∂x

∥∥∥ = max
|Nd(W

k′
0 )|

∥∥∥∂τ
∂x

(x)
∥∥∥ ,

and ‖∂τ∂x(x)‖ is the operator norm of the Jacobian matrix. This completes the proof of

(2.43).

We will see in Chapter 4 that it is useful to work with a slightly larger neighborhoods

of NdT . For a given face T ∈ Kk
n, let N

c
dT be the closed circumscribing ball of NdT with

respect to characteristic coordinates. For a simplicial sub-surface K ⊂ Kk
n, we define

N c
dK =

⋃

T∈Face(K)

N c
dT . (2.45)

The diameters of |NdT | and N c
dT are related by

diamΛ|NdT | ≤ diamΛN
c
dT ≤ 2 diamΛ|NdT | .

Therefore as a Corollary to Proposition 26 we have the following.

Corollary 27. There exists constants C0 and C1 such that for any T ∈ Face(Kk
n)and k ≥ 0

we have

C0λ
jT (12)

k−jT ≤ diamΛN
c
dT ≤ C1λ

jT (12)
k−jT .

If |T | ⊂ N2(v0,Kn), then jT ≥ 0 and k − jT ≥ 0, so we get the following Corollary.

Corollary 28. If k ≥ 0 and T ∈ Face(Kk
n) and |T | ⊂ |N2(v0,Kn)|, then

C0λ
k
min ≤ diamΛN

c
dT ≤ C1λ

k
max ,

where λmin = min{12 , λ} and λmax = max{12 , λ}.
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The same techniques that we used to bound the diameter and area of N c
dT in charac-

teristic coordinates also apply to bound them in affine coordinates. In particular, we have

the following lemma.

Lemma 29. Suppose U is an affine coordinate neighborhood. Then there exists a constant

C such that for k sufficiently large and T ∈ Face(Ωk0), where N
c
dT ⊂ U , then

diamA(N
c
dT ) ≤ C(12)

k and

areaA(N
c
dT ) ≤ C(12)

2k,

where the A subscript indicates that computations are made with respect to affine coordi-

nates.

For a fixed value of d ≥ 0, the following proposition gives a bound on the number of

times the neighborhoods N c
dT overlap.

Proposition 30. There exists a constant C such that for any k ≥ 0 and y ∈ |Kn|

ηk(y) := #{T ∈ Face(Kk
n) : y ∈ N c

dT} ≤ C . (2.46)

Proof. Since c : Kk
n → Kk+1

n is a simplicial isomorphism and a dilation in characteristic

coordinates we have the following scaling relation

ηk(y) = ηk+1(cy). (2.47)

So it suffices to prove η0(y) < C for all y ∈ |Kn|. We decompose this problem into two

subproblems

(i) η0(y) < C for y ∈ |N1(v0,Kn)|, and

(ii) η0(y) < C for y ∈ |Kn \N1(v0,Kn)|.

In case (i) we show the neighborhoods N c
dΩj and |N1(v0,Kn)| are disjoint for all j

sufficiently negative, say j ≤ j ′. It then follows that η0(y) < #{T ∈ Kn : jT > j′}. Let

d0 = dist(v0, |Ω0|) be the Euclidean distance in characteristic coordinates from v0 to the

annulus Ω0. A scaling argument shows dist(v0, |Ωj |) = λjd0. To estimate dist(v0, N
c
dΩj) let
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p ∈ N c
dT be a point which achieves the minimum distance, with T a face in Ωj ⊂ Kn. Then

for any t ∈ |T | we have by the triangle inequality

dist(v0, N
c
dΩj) ≥ |t| − |p− t|

≥ dist(v0, |Ωj |)− diamΛN
c
dT

≥ d0λ
j − C1(2λ)j ,

where the last term of the last inequality comes from Corollary 27. As j → −∞ the first

term dominates and approaches∞. So for all j sufficiently negative say j ≤ j ′ we have that

dist(v0, N
c
dΩj) exceeds diamΛ|N1(v0,Kn)| proving

N c
dΩj ∩ |N1(v0,Kn)| = ∅ .

This completes the proof of case (i).

By (2.47), to prove case (ii) it is equivalent to prove

(ii’) ηk(y) < C for all y ∈ |Ω0| and k ≥ 0.

Let Ω̃0 = |N1(v0,K1
n)| ∪ |Kn \N4(v,Kn)| = ∪|j|>1|Ωj | be a central region of |Kn| together

with an annulus. Notice |Ω0| and Ω̃0 are disjoint, being separated by |Ω1| and |Ω−1|. Let

k′ ≥ 0 be such that

C1λ
k′

max < dist(|Ω0|, Ω̃0) ,

where C1 is given by Corollary 27. We prove the following claim: For any face T ∈ Kk
n such

that k ≥ k′ and |jT | > 1 the neighborhoods N c
dT and |Ω0| are disjoint. The claim follows

from the estimate

dist(|Ω0|, N c
dT ) ≥ dist(|Ω0|, Ω̃0)− diamΛN

c
dT

≥ C1λ
k′

max − C1λkmax > 0 .

We now show (ii’). For any T ∈ Kk
n with k > k′ and |jT | ≤ 1 we get a lower bound on the

area of |T |,
areaΛ|T | ≥ C2(

1
2)
2k , (2.48)
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by taking d = 0 in Proposition 26, and by Corollary 27 we have the bound

diamΛN
c
dT ≤ C1(

1
2)
k . (2.49)

Fix y0 ∈ |Ω0| and k > k′. Let B(y0, C1(
1
2)
k) be the ball of radius C1(

1
2)
k centered at y0.

Then for any T ∈ Face(Kk
n) such that y0 ∈ N c

dT , we have |T | ⊂ |NdT | ⊂ B(y0, C1(
1
2)
k) , by

(2.49). Then we have the following string of inequalities

πC21 (
1
2)
2k = areaΛB(y0, C1(

1
2)
k) ≥

∑

|T |⊂B(y0,C1( 12 )
k)

areaΛ|T |

≥ #{T ∈ Face(Kk
n) : |T | ⊂ B(y0, C1(

1
2)
k)} · C2(12)2k .

The last inequality follows from (2.48). So

ηk(y0) ≤ #{T ∈ Face(Kk
n) : |T | ⊂ B(y0, C1(

1
2)
k)} ≤ π

C21
C2
.

Since this bound is independent of k and y0 we are done.

Next we define the final piece of geometric information that we need about the neigh-

borhoods N c
dT .

Definition 31. A region Ω ⊂ Rn is star-shaped with respect to a ball B if, for all x ∈ Ω,

the closed convex hull of {x} ∪ B is a subset of Ω. Suppose Ω is star-shaped with respect

to some ball. Define ρmax(Ω) = sup{ρ : Ω is star-shaped with respect to a ball of radius ρ}.
Then the chunkiness-parameter of Ω, denoted by γ(Ω), is defined by

γ(Ω) =
diam(Ω)

ρmax(Ω)
.

Observe that the ball, which has a chunkiness parameter of 2, has the smallest chunkiness-

parameter of any domain.

Proposition 32. There exist constants γ0 and k
′, such that for any k ≥ k′ and T ∈

Face(Ωk0),

γA(N
c
dT ) ≤ γ0 .
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The proof of this proposition depends on the following lemma.

Lemma 33. Let f : Ω→ Ω′ be a C2-diffeomorphism between bounded domains of R2. Then

there is a constant R such that the image of any ball B ⊂ Ω of radius r < R is convex.

Moreover, there are constants C1 and C2 such that

C1r ≤ inradius f(B) ≤ circradius f(B) ≤ C2r,

for all such balls B, where inradius and circradius are the radii of inscribing and circum-

scribing balls of f(B).

Proof of Proposition 32. By rotational symmetry, we need only consider faces in a single

wedge |W | of Kn. Let k
′ be such that |N(Ω0 ∩W )k

′ | is an affine coordinate neighborhood,

and let x be an affine coordinate on it.

The transition map x = τ(y) from characteristic coordinates is C2 on N(Ω0 ∩ W )k
′
.

Let R be the constant associated with this map by Lemma 33. Choose k′′ > k′ such

that diamΛ(N
c
dT ) < R for all k ≥ k′′ and T ∈ Face(Ω0 ∩W )k. Then by Lemma 33, the

neighborhood N c
dT is convex in affine coordinates and

γA(N
c
dT ) ≤

2 circradius τ(N c
dT )

inradius τ(N c
dT )

≤ 2C2
C1

.

Proof of Lemma 33. To prove the existence of R, consider applying an invertible linear map

J to a circle of radius r. The image is an ellipse with principle radii σmin(J)r and σmax(J)r,

where 0 < σmin(J) ≤ σmax(J) are the singular values of J . Let

σmax = max
x∈N(Ω∩W )k

′
σmax(Df(x)),

where Df(x) represents the Jacobian of f at x, and similarly define σmin. By expanding f

as a linear map and a second-order error term, we see that, there is some R > 0 such that,

for any ball B ⊂ Ω of radius r < R, we have

1/2σminr ≤ inradius f(B) ≤ circradius f(B) ≤ 2σmaxr.
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To see that the image of sufficiently small balls are convex, use the fact that a region with

smooth boundary is convex if and only if the curvature of the boundary is non-negative.
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Chapter 3

GLOBAL APPROXIMATION IN SOBOLEV SPACES

In the previous chapter we defined a CR,1
loc -subdivision scheme, and we showed that it

induced a CR,1loc -atlas on any finite simplicial surface without boundary |K|. In this chapter

we use the CR,1loc -atlas to define HR+1-Sobolev spaces on |K|. Then we show that subdivision

functions are in H2(K) given only that the the subdivision scheme is C1,1loc .

Also, we construct a family of linear maps

P k : L1(K)→ S(Kk) for all k ≥ 0, (3.1)

and derive an asymptotic bound for the approximation error of the form

‖P kf − f‖Hs(K) = O(ak) (3.2)

for sufficiently smooth functions f . The global approximation operators P k will be

constructed from approximation operators acting on the n-regular neighborhoods. The

final theorem of this chapter shows how bounds on the approximation errors in Kn can be

used to derive bounds on the global approximation error.

We review Sobolev spaces on a domain of Rm, in Section 3.1, then in Section 3.2 we

extend the definition to compact simplicial surfaces. In the final section, we state and prove

the global approximation theorem.

3.1 Sobolev Spaces in Rn

The functions in a Sobolev space have derivatives in Lp spaces. Let Ω ⊂ Rn be a domain,

i.e., an open set. The Lp norms for 1 ≤ p ≤ ∞ on Ω are given by

‖f‖Lp(Ω) =
(∫

Ω
|f |pdx

)1/p
and ‖f‖L∞(Ω) = ess sup

x∈Ω
|f(x)|.
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We identify functions which are identical almost everywhere (with respect to Lebesgue

measure), so that these are actually norms, and define Lp(Ω) to be the class of functions on

Ω with finite norm. We say f ∈ Lploc(Ω) if for each domain U compactly contained in Ω we

have f|U ∈ Lp(U). The broadest class of functions we consider is L1loc(Ω), which contains

all other Lp spaces.

Sobolev functions possess weak derivatives. Given a function f ∈ L1loc(Ω) and a multi-

index α, we say g ∈ L1loc(Ω) is a weak derivative of f if

∫

Ω
f(x)Dαφ(x) dx = (−1)|α|

∫

Ω
g(x)φ(x) dx for all φ ∈ C∞0 (Ω),

and we write Dαf = g. The zero subscript on a function space denotes the class of functions

with compact support, e.g., the space C∞0 (Ω) consists of functions f ∈ C∞(Ω) such that

supp f is compactly contained in Ω.

The following proposition gives a product rule for the product of a weakly differentiable

function with a classically differentiable function.

Proposition 34. Let u be a function, defined on a domain Ω ⊂ Rn, with weak derivatives

Dαu for all |α| ≤ k, and let ρ ∈ Ck(Ω). Then ρ · u has weak derivatives of order k, and
Dα(ρu) is given by the product rule

Dα(ρ · u) =
∑

β≤α

(
α

β

)
Dβρ ·Dα−βu . (3.3)

Proof. First consider the case k = 1 and Dα = ∂
∂xj

for some j = 1, . . . , n. For any φ ∈
C∞0 (Ω) we have

∫
ρu ∂

∂xj
φ =

∫
u
(

∂
∂xj

(ρφ)− ( ∂
∂xj

ρ)φ
)

= −
∫ (

ρ ∂
∂xj

u+ ( ∂
∂xj

ρ)u
)
φ . (3.4)

Now for arbitrary k > 1 and multi-index |α| ≤ k we apply (3.4) a total of |α| times to show

∫
ρ uDαφ = (−1)|α|

∫ (∑

β≤α

(
α

β

)
DβρDα−βu

)
φ .
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For any integer s ≥ 0 and exponent 1 ≤ p ≤ ∞, define the Sobolev space H s,p(Ω) to be

the class of functions f ∈ Lp(Ω) such that for any multi-index |α| ≤ s, the weak derivative

Dαf exists and is in Lp(Ω). Define the Hs,p(Ω) semi-norms and norms by

|f |Hs,p(Ω) =

( ∑

|α|=s
‖Dαf‖pLp(Ω)

)1/p
and ‖f‖Hs,p(Ω) =

(
s∑

m=0

|f |pHm,p(Ω)

)1/p
,

|f |Hs,∞(Ω) = max
|α|=s

‖Dαf‖L∞(Ω) and ‖f‖Hs,∞(Ω) = max
0≤m≤s

|f |H∞,m(Ω).

We usually are concerned with the case when p = 2 and simply write H s(Ω). We also will

need the space Hs,p
loc of locally Hs,p functions and Hs,p

0 of functions in Hs,p with compact

support.

The interaction of Sobolev functions with Cr,1
loc-functions (C

r-functions with locally Lip-

schitz derivatives of order r) plays an important role, since this is the class of continuous

functions defined on simplicial surfaces in Section 2.6. The next proposition can be found

in Evans and Gariepy [8], Section 4.2.3.

Proposition 35. The function f : Ω→ R is locally Lipschitz if and only if f ∈ H1,∞
loc (Ω).

Thus we have an identification of Cr,1
loc(Ω) with H

r+1,∞
loc (Ω). The product rule and chain

rule hold almost everywhere for these functions, as we show in the next three propositions.

Proposition 36. Suppose τ : Ω → Ω′ ⊂ Rm is a Ck,1loc (Ω) map for some k ≥ 1 and

f ∈ C∞(Ω′) then f ◦ τ has weak derivatives of order k + 1 and satisfies the chain rule:

Dα(f ◦ τ) =
∑

1≤|β|≤|α|

(
Dβf ◦ τ

)
·Mταβ (3.5)

where Mταβ ∈ L∞loc(Ω) is given by (2.38), as in the chain rule for smooth functions.

Proof. For any multi-index |α| = k the chain rule (3.5) applies by the classical rules of

differentiation. We will be done if we can show an order 1 derivative of each term in the

resulting series is given by an application of the product rule and chain rule. That is we

must show that formally applying the product rule and chain rule to each term in the sum

gives the weak derivative of that term. Notice, in the case |α| = k, for any β we have that

Dβf ◦ τ ∈ Ck(Ω), and Mταβ ∈ C1(Ω) except for the terms when |β| = 1 in which case by

(2.38) we have Mταβ = Dατβ , which is locally Lipschitz.
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By Proposition 35 the term Dατβ has weak derivatives of order 1. Therefore by Propo-

sition 34 the term (Dβf ◦ τ) · Dατβ has weak derivatives of order 1 given by the product

rule.

Proposition 37. Let τ : Ω → Ω′ be a Cr,1loc-diffeomorphism between domains in Rn for

some r ≥ 1. For any f ∈ Hr+1(Ω′) the composition f ◦ τ has weak derivatives Dαf for all

|α| ≤ r + 1, and the weak derivatives are given by the chain rule

Dα(f ◦ τ) =
∑

1≤|β|≤|α|
(Dβf ◦ τ) ·Mταβ ,

where Mταβ is given by (2.38), as in the chain rule for smooth functions.

Proof. For any f ∈ Hr+1(Ω′) there is a sequence {fn} of functions in C∞(Ω′) converging to

f in the Hr+1(Ω′)-norm.

Using the change of coordinates x = τ(y) and that fn converges to f in L2(Ω′) we

compute as follows: For any φ ∈ C∞0 (Ω) and any multi-index α such that 1 ≤ |α| ≤ r + 1

we have

∫

Ω
(f ◦ τ)(y)Dαφ(y) dy =

∫

Ω′
f(x)Dαφ(τ−1x)

∣∣∣det ∂τ
−1

∂x

∣∣∣ dx

= lim
n→∞

∫

Ω′
fn(x)D

αφ(τ−1x)
∣∣∣det ∂τ

−1

∂x

∣∣∣ dx

= lim
n→∞

∫

Ω
(fn ◦ τ)(y)Dαφ(y) dy .

We now apply Proposition 36 and continue the computation using that Dβfn → Dβf in

L2(Ω′) for all |β| ≤ r + 1

∫

Ω
(f ◦ τ)(y)Dαφ(y) dy = (−1)|α| lim

n→∞

∫

Ω

∑

1≤|β|≤|α|
Dβfn(τy)Mταβ(y)φ(y) dy

= (−1)|α| lim
n→∞

∫

Ω′

∑

1≤|β|≤|α|
Dβfn(x)Mταβ(τ

−1x)φ(τ−1x)
∣∣∣det ∂τ

−1

∂x

∣∣∣ dx

= (−1)|α|
∫

Ω′

∑

1≤|β|≤|α|
Dβf(x)Mταβ(τ

−1x)φ(τ−1x)
∣∣∣det ∂τ

−1

∂x

∣∣∣ dx

= (−1)|α|
∫

Ω

∑

1≤|β|≤|α|
(Dβf ◦ τ)(y)Mταβ(y)φ(y) dy .
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Proposition 38. Let u ∈ Cr,1loc(Ω) and f ∈ Hr+1(Ω) then f ·u has weak derivatives Dα(f ·u)
for all |α| ≤ r + 1 and they are given by the product rule (3.3).

Proof. Let {fn} be a sequence of functions in C∞(Ω) converging to f in the Hr+1(Ω)-norm.

Then Dβfn → Dβf in L2(Ω) for any |β| ≤ r+1. So for any |α| ≤ r+1 and φ ∈ C∞(Ω) we

have

∫
f uDαφ = lim

n→∞

∫
fn uD

αφ

= lim
n→∞

∫ ∑

β≤α

(
α

β

)
DβfnD

α−βu φ by Prop. 34

=

∫ ∑

β≤α

(
α

β

)
Dβf Dα−βu φ .

To construct Sobolev spaces on surfaces we need two operations: multiplication and

change of coordinates. The key propositions are given next. For cases where the multipli-

cand and change of coordinate functions are in Cr+1, these results are standard and can be

found in Adams [1]. Here we use Cr,1
loc functions instead.

Proposition 39. Given ρ ∈ Cr,10 (Ω) there exists a constant C such that

‖ρ · f‖Hr+1(Ω) ≤ C‖f‖Hr+1(Ω) for all f ∈ Hr+1(Ω). (3.6)

Proof. By the product rule, Proposition 38, we have

Dα(ρ · f) =
∑

β≤α

(
β

α

)
Dα−βρ ·Dβf for any |α| ≤ r + 1.

Applying Hölder’s inequality, we see that each term is in L2(Ω), and moreover

‖Dαρ · f‖L2(Ω) ≤
∑

β≤α

(
α

β

)
‖Dα−βρ‖L∞(Ω) · ‖Dβf‖L2(Ω)

≤ C‖ρ‖Hr+1,∞(Ω)

∑

β≤α
‖Dβf‖L2(Ω)

≤ C‖ρ‖Hr+1,∞(Ω)‖f‖Hr+1(Ω).

Summing over |α| ≤ r + 1, we get (3.6).
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Now we examine a change of coordinate formula for Sobolev functions. Suppose τ : Ω→
Ω′ is a Cr,1(Ω)-diffeomorphism between domains in Rn with r ≥ 1. That is, for all |α| ≤ r,

the partial derivative Dατ is bounded and uniformly continuous on Ω, and for all |α| = r,

the partial derivative Dατ is Lipschitz continuous on Ω. Proposition 24 shows that τ−1 is

also of class Cr,1(Ω′).

Proposition 40. Suppose τ : Ω→ Ω′ is a Cr,1(Ω)-diffeomorphism between domains in Rn.

There exists a constant C such that for any domains A ⊂ Ω and A′ = τ(A) ⊂ Ω′, we have

1/C ‖f ◦ τ‖Hr+1(A) ≤ ‖f‖Hr+1(A′) ≤ C ‖f ◦ τ‖Hr+1(A) for all f ∈ Hr+1(A′). (3.7)

The constant C = C(Ω, τ) is independent of A.

Proof. It suffices to prove the leftmost inequality of (3.7). Indeed the rightmost inequality

follows by considering the Cr,1(Ω′)-diffeomorphism τ−1 : Ω′ → Ω.

We first consider the L2-norm. For any A ⊂ Ω and f ∈ L2(A′) we have

‖f ◦ τ‖2L2(A) =
∫

A
f(τy)2 dy

=

∫

A′

f(x)2
∣∣∣det ∂τ

−1

∂x
(x)
∣∣∣ dx

Since τ ∈ C1(Ω) there is a constant C such that

∣∣∣det ∂τ
−1

∂x
(x)
∣∣∣ ≤ C for all x ∈ Ω.

Thus we have the inequality

‖f ◦ τ‖L2(A) ≤ C‖f‖L2(A′), (3.8)

where the constant C is independent of A.

Now we consider Sobolev norms. For any |α| ≤ r + 1 and f ∈ Hr+1(A) we have by

Proposition 37 that the weak derivative Dα(f ◦ τ) is given by (3.5), where Mταβ ∈ L∞(Ω).
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Thus

‖Dα(f ◦ τ)‖L2(A) ≤
∑

1≤|β|≤|α|
‖(Dβf ◦ τ)(Mταβ)‖L2(A)

≤
∑

1≤|β|≤|α|
‖Mταβ‖L∞(Ω) ‖Dβf ◦ τ‖L2(A)

≤ C
∑

1≤|β|≤|α|
‖Dβf‖L2(A′) ≤ C‖f‖Hr+1(A).

In the last line we have used (3.8). Notice the constant C is independent of A. Summing

over all |α| ≤ r + 1 completes the proof.

The following proposition gives an identity for the Hm-semi-norm of a dilated function.

Proposition 41. Suppose Ω is a domain in R2. Let c(x) = λx be a dilation map on R2,

with pull-back c∗. Then for any f ∈ Hm(Ω), we have

|c∗f |Hm(c−1Ω) = λm−1|f |Hm(Ω) .

Proof. Differentiating we get Dαc∗f = λ|α|c∗Dαf for any multi-index α. So

|c∗f |2Hm(c−1Ω) =
∑

|α|=m

∫

c−1Ω
(Dαc∗f)2 dx

= λ2m
∑

|α|=m

∫

c−1Ω
(Dαf(λx))2 dx

= λ2(m−1)
∑

|α|=m

∫

Ω
(Dαf(x))2 dx

= λ2(m−1)|f |2Hm(Ω) .

3.2 Sobolev Spaces on Simplicial Surfaces

We define a Sobolev norm on a finite simplicial surface K without boundary. Suppose S is a

CR,1loc -subdivision scheme. We use an atlas of coordinate charts and a subordinate partition

of unity to decompose a function into finitely many pieces, each compactly supported on
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some n-regular complex. This construction follows the construction of Sobolev spaces on a

compact manifold as found in Taylor [21].

The Sobolev norm on |K| is defined in terms of an atlas and a partition of unity. The

Sobolev norms on the n-regular complex |Kn| is defined using a characteristic map χn as a

global coordinate chart. That is, for every Ω ⊂ |Kn| we define

‖f‖Hs
Λ
(Ω) = ‖f ◦ χ−1n ‖Hs(χn(Ω)). (3.9)

For each vertex v ∈ K of valence n, we fix a characteristic coordinate chart ψv = χn ◦ ιv :

|N1(v)|◦ → R2, as in (2.25). Define a central subcomplex of Kn by

K̂n = N3(v0,K
2
n) for each valence n, (3.10)

and let Ûv = ι−1v (|K̂n|◦) be the corresponding open neighborhood of v. Let ρv be a CR,1loc -

partition of unity, subordinate to the cover {Ûv}, and define the cut-off representative of

f near v to be fv ∈ C(Kn), given by

(ρv · f) ◦ ι−1v , (3.11)

where we extend by zero to the rest of Kn. Then we define the global Sobolev norm on |K|
for each non-negative integer s ≤ R+ 1 by

‖f‖Hs(K) =
∑

v∈K
‖fv‖Hs

Λ
(Kn) . (3.12)

Using Propositions 39 and 40, one can show that the definition of the norm is indepen-

dent, up to equivalence, of the choice of atlas and subordinate partition of unity. That is,

if {ψ̃α, Uα} is another finite atlas and ρ̃α is a subordinate partition of unity, then the norm

defined by

|||f ||| =
∑

α

‖(ρ̃α · f) ◦ ψ̃−1α ‖Hs

is equivalent to the Hs(K) norm defined in (3.12).

We now extend Proposition 17, showing that subdivision functions are in H2(K).

Theorem 42. Suppose S is a C1,1loc -subdivision scheme. Then all subdivision functions S(K)

on K are in H2(K) .
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Proof. Fix u ∈ CN(K) and let f = S∞u. We want to show that ‖f ◦ ι−1v ‖Hp
Λ
(K̂n)

is finite for

each vertex v ∈ K of valence n. It follows that f ∈ H2(K), since

‖f‖H2(K) =
∑

v∈K
‖(ρ · f) ◦ ι−1v ‖H2

Λ
(Kn) ≤ C

∑

v∈K
‖f ◦ ι−1v ‖H2

Λ
(K̂n)

<∞ ,

by Proposition 39.

At a sufficiently fine level, f ◦ ι−1v is a subdivision function on K̂n. Let k0 ≥ 3 be such

that 2k0 −mw + 1 ≥ 3 · 2k0−2, where mw is the mask width of the subdivision scheme. Let

ũ = ι−1∗v u ∈ CN(N2k0 (v0,K
k0
n )), then by Proposition 8 we have

f ◦ ι−1v = ι−1∗v f = ι−1∗v S∞uk0 = S∞ι−1∗v uk0 = S∞ũ on |K̂n|.

Let Ω0 = N3·2k0−2(v0,K
k0
n ) \ N3·2k0−3(v0,Kk0

n ) be a fundamental annulus in Kk0
n . Let

Ωj = cjΩ0 ⊂ Kk0+j
n , then the annular regions {|Ωj | : j ≥ 0} have disjoint interiors and

cover K̂n \ {v0}. So we have

|f |2
Hm
Λ
(K̂n)

=
∞∑

j=0

|f |2Hm
Λ
(Ωj)

. (3.13)

A subdivision function on N3·2k0−2(v0,K
k0
n ) is determined by a control net in

V = CN(N3·2k0−2+mw−1(v0,K
k0
n )).

Let S = Sn,3·2k0−2+mw−1 be the subdivision matrix acting on V , with distinct eigenvalues

1 = λ0 > λ1 > |λ2| ≥ · · · ≥ |λN |.
For each m = 0, 1 or 2, we decompose V into a pair of S-invariant subspaces. For m = 1

or 2, let Tm be spanned by eigenvectors corresponding to the λ0 through λm−1 eigenvalues of

S, and let T0 = {0} be the trivial subspace. Let Vm be spanned by generalized eigenvectors

corresponding to the λm through λN eigenvalues of S. Then for each m = 0, 1 or 2 we have

a decomposition of V

V = Tm ⊕ Vm (3.14)

and a corresponding decomposition of S

S = ST ⊕ Sm . (3.15)
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Furthermore, the spectral radius of Sm is given by

ρ(Sm) = |λm| . (3.16)

From Theorem 11, it follows that: (i) The λ0-eigenspace of S is 1-dimensional, containing

constant control nets which generate constant valued subdivision functions, and (ii) The

λ1-eigenspace of S is a 2-dimensional space of control nets which generate components of

a characteristic maps , i.e., they generate linear functions in characteristic coordinates. So

S(Tm) are functions which are trivial in the Hm
Λ (K̂n)-semi-norm; i.e.,

|S∞ũ|
Hm
Λ
(K̂n)

= 0 for ũ ∈ Tm and m = 0, 1 or 2. (3.17)

Continuing, we prove the claim

|S∞ũ|Hm
Λ
(Ωj) = λ

−(m−1)j
1 |S∞Sj ũ|Hm

Λ
(Ω0) (3.18)

for any ũ ∈ V , j ≥ 0, and m = 0, 1 or 2. Since Sj = (c∗S)j = c∗jSj , we have

|S∞Sj ũ|Hm
Λ
(Ω0) = |S∞c∗jSj ũ|Hm

Λ
(Ω0)

= |c∗jS∞ũ|Hm
Λ
(Ω0) by Prop. 8

= λ
(m−1)j
1 |S∞ũ|Hm

Λ
(cjΩ0) by Prop. 41,

proving (3.18).

Notice that by the smoothness hypothesis for the subdivision scheme, S∞ũ ∈ C1,1(Ω0) ⊂
H2
Λ(Ω0) for any ũ ∈ V . So for any norm on V , the Hm-operator norm for S∞ satisfies

|S∞ũ|Hm
Λ
(Ω0) ≤ |S∞|Hm‖ũ‖ . (3.19)

We now combine (3.13), (3.18) and (3.19). For any ũ ∈ V and m = 0, 1 or 2, we apply the

decomposition (3.14) and (3.15) to get ũ = ũT + ũm and Sj ũ = SjT ũT + Sjmũm. By the

triviality of Tm (3.17) we have

|S∞Sj ũ|Hm
Λ
(Ω0) = |S∞Sjmũm|Hm

Λ
(Ω0)

≤ |S∞|Hm‖Sm‖j‖ũm‖, (3.20)
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where ‖Sm‖ is the operator norm of Sm. Then applying (3.13) and (3.18) we have

|S∞ũ|2Hm
Λ
(N2L+2)

=
∞∑

j=0

|S∞ũ|2Hm
Λ
(Ωj)

=
∞∑

j=0

λ
−2(m−1)j
1 |S∞Sj ũ|2Hm

Λ
(Ω0)

≤ |S∞|2Hm‖ũm‖2
∞∑

j=0

(
λ
−(m−1)
1 ‖Sm‖

)2j
. (3.21)

For any ε > 0 we can choose a vector norm on V such that ‖Sm‖ ≤ ρ(Sm) + ε. So by

(3.16), the parenthesized factor in (3.21) satisfies the bound

λ
−(m−1)
1 ‖Sm‖ ≤





(1 + ε)λ1 m = 0

(λ1 + ε) m = 1

(|λ2|+ ε)/λ1 m = 2

for any ε > 0. In particular, ε can be chosen so that these factors are always less than 1 since,

1 > λ1 > |λ2|. Therefore the geometric series in (3.21) converges and S∞ũ ∈ H2
Λ(K̂n).

3.3 A Global Approximation Theorem

Consider a family of linear operators

Q = {Qk : L1Λ,loc(Kn)→ S(Kk
n) for k ≥ 0} . (3.22)

The family Q is said to be local if there is an integer d called the support width such that

the following condition holds for every subcomplex K ⊂ Kk
n:

If f ≡ 0 on |NdK|, then Qkf ≡ 0 on |K|. (3.23)

The global approximation P kf is constructed from the cut-off representatives fv as in

(3.11) by

P kf =
∑

v∈K
ι∗vQ

kfv , (3.24)

where ι∗vQ
kfv is extended by zero outside of N1(v,K).
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The asymptotic bounds in (3.2) for the case of box splines on a Euclidean domain

are ak = (1/2)pk. In our analysis, the role of the base 1
2 is played by the sub-dominant

eigenvalues of the subdivision matrix. Let λmax(Kn) be the sub-dominant eigenvalue of the

subdivision matrix Sn or 1
2 , whichever is greater. For the simplicial surface K, let

λmax(K) = max{λmax(Kn) : n is the valence of a vertex v in K}. (3.25)

LetN1 be a neighborhood of K̂n inKn, and suppose for each valence which is represented

in K, we have a local estimate

‖Qkf − f‖
Hs
Λ
(K̂n)

≤ Cελ
(r−s−ε)k
max ‖f‖Hr

Λ
(N1) for all f ∈ Hr

Λ(N1), (3.26)

where λmax = λmax(Kn).

Theorem 43. Suppose for each valence n represented in the complex K, there is a family Q

of local approximation operators as in (3.22), with support width dn, that satisfy the estimate

(3.26). Then the global approximation operator P k given by (3.24) satisfies the estimate

‖P kf − f‖Hs(K) ≤ Cελ
(r−s−ε)k
max ‖f‖Hr(K) for all f ∈ Hr(K), (3.27)

where λmax = λmax(K) and k is sufficiently large. In particular, (3.27) is satisfied for all

k ≥ k0, where k0 satisfies 2
k0−2 −mw − d + 1 ≥ 0 and d = max{dn : v is of valence n for

some v ∈ K}.

Proof. Fix f ∈ Hr(K), then by the definition of Hr(K) we have fv ∈ Hr
Λ(Kn) for each

vertex v ∈ K and supp fv ⊂ |K̂n|.
We first show that the pull back of a local approximation ι∗vQ

kfv is a subdivision function

on Kk. (Recall, we extend the function by zero outside |N1(v,K)|). By linearity, this

shows that the global approximation P kf given by (3.24) is a subdivision function. Let

u ∈ CN(Kn) be such that Qkfv = S∞u. We show that ι∗vQ
kfv = S∞ι∗u on all of |K|, where

we extend the control net ι∗u by zero so that ι∗u ∈ CN(Kk). Now

supp fv ⊂ |K̂n| = |N3·2k−2(v0,Kk
n)|.

Hence by locality of the local approximation,

suppu ⊂ N3·2k−2+d−mw
(v0,K

k
n) .
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Therefore

supp S∞ι∗u = |N3·2k−2+d(v,Kk)|. (3.28)

By Proposition 8 we have

ι∗S∞u = S∞ι∗u on N2k−mw+1(v,K
k).

Finally, we see that the hypothesis on k0 implies that there is an inclusion

N3·2k−2+d(v,K
k) ⊂ N2k−mw+1(v,K

k) for all k ≥ k0.

Thus, the functions i∗vQ
kfv and S∞ι∗u are identical on their supports, and hence identical

on all of |K|.
We now prove the global error estimate (3.27). By definition (3.12) of the Sobolev norm,

‖P kf − f‖Hs(K) =
∑

v∈K
‖ρv · (P kf − f) ◦ ι−1v ‖Hs

Λ
(Kn). (3.29)

By (3.24) and the partition of unity, we can write

P kf − f =
∑

w∈K
(Qkfw − fw) ◦ ιw.

Thus, substituting into (3.29) and using the triangle inequality we get

‖P kf − f‖Hs(K) ≤
∑

v,w∈K
‖ρv · (Qkfw − fw) ◦ ιw ◦ ι−1v ‖Hs

Λ
(Kn)

≤
∑

v∈K
‖ρv · (Qkfv − fv)‖Hs

Λ
(Kn)+

∑

(v,w)∈K
‖ρv · (Qkfw − fw) ◦ ιw ◦ ι−1v ‖Hs

Λ
(Kn) . (3.30)

Because ρv ·(Qkfw−fw) is supported in |N1(v)|◦∩|N1(w)|◦ , applying Proposition 40 yields

the inequality

‖ρv · (Qkfw − fw) ◦ ιw ◦ ι−1v ‖Hs
Λ
(Kn) ≤ Cvw‖ρv · (Qkfw − fw)‖Hs

Λ
(Kn) . (3.31)

Applying Proposition 39 to the inequality (3.31) then gives

‖ρv · (Qkfv − fv)‖Hs
Λ
(Kn) ≤ ‖Qkfv − fv‖Hs

Λ
(K̂n)

. (3.32)
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Substituting (3.31) and (3.32) into (3.30) yields the inequality

‖P kf − f‖Hs(K) ≤ C
∑

v∈K
‖Qkfv − fv‖Hs

Λ
(K̂n)

,

which, together with the local estimate (3.26), gives

‖P kf − f‖Hs(K) ≤ Cελ
(r−s−ε)k
max

∑

v∈K
‖fv‖Hr

Λ
(N1) = Cελ

(r−s−ε)k
max ‖f‖Hr(K) ,

concluding the proof.

Constructing a family of approximation operators satisfying (3.26) and applying Theo-

rem 43 for Loop’s subdivision scheme yields the main result of this thesis. Recall Theorem 25

states that Loop’s subdivision scheme is a C2,1loc -scheme. We show in Chapter 4 that the

required estimate (3.26) follows from the existence of a quasi-interpolant on Kn with cer-

tain polynomial reproducing properties. In Chapter 5 we construct a quasi-interpolant for

each Kn for Loop’s subdivision scheme. In particular, applying the result of Chapter 4,

this shows that the estimate (3.26) holds for any s < r ≤ 3. Therefore once we have these

results we will have proved the main result of this thesis which we restate here.

Theorem 2. Let S(Kk) be the space of Loop’s subdivision functions on the k-times subdi-

vided complex Kk. For integers 0 ≤ s < r ≤ 3 and any ε > 0 we have the following bound

on the minimal Hs(K)-approximation error of a function f ∈ Hr(K):

dist(f, S(Kk))Hs(K) ≤ Cελ
(r−s−ε)k
max ‖f‖Hr(K) ,

where the constant Cε = C(ε,K) is independent of k and f .
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Chapter 4

APPROXIMATION THEORY ON THE n–REGULAR COMPLEX

In the previous chapter we proved a global approximation theorem for subdivision func-

tions, Theorem 43. For each valence n and level k > 0, suppose we have a local, linear

operator Qk that approximates a function f ∈ Hr(Kn) on the n-regular neighborhood Kn

by a subdivision function Qkf ∈ S(Kk
n). Furthermore, suppose the Hs-approximation error

satisfies the estimate (3.26), which shows ‖Qkf−f‖Hs = O(λ(r−s−ε)k), where λ = λmax(Kn)

and the Hs-norm is computed on some fixed bounded domain in characteristic coordinates.

In Section 3.3 we used the operators Qk to construct a global approximation operator P k

that approximates a function f ∈ Hr(K) defined on a simplicial surface K by a subdivi-

sion function P kf ∈ S(Kk). Theorem 43 shows that ‖P kf − f‖Hs = O(λ(r−s−ε)k), where

λ = λmax(K). In this chapter, we define the properties of a quasi-interpolant on Kn and

show that the approximation error of a quasi-interpolant satisfies the bound (3.26).

A quasi-interpolant on Kn is a generalization of a standard technique for proving ap-

proximation results on Rm. We begin with an introductory example of quartic triangular

splines in R2, demonstrating that the existence of a quasi-interpolant of order r implies an

approximation power of at least order r. The quasi-interpolant technique is well known, see

for instance [20, 3, 6].

Let S(Kk
6 ) be the space of quartic triangular splines on the subdivided regular grid Kk

6 .

As shown in Kowalski [12], the approximation power of quartic splines is demonstrated

by constructing a family of local linear operators Qk : H1(R2) → S(Kk
6 ), called a quasi-

interpolant. We will show

‖Qkf − f‖Hs ≤ C(12)
(r−s)k‖f‖Hr for 0 ≤ s < r ≤ 4. (4.1)

The key properties of a quasi-interpolant are locality, boundedness and polynomial re-

production. Suppose Qk is local with support width d as defined in (3.23). By boundedness,
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we mean that there exists a constant ‖Q‖ such that ‖Qkf‖Hs(T ) ≤ ‖Q‖‖f‖Hs(NdT ) for any

level k and any face T ∈ Kk
6 . To get fourth-order approximation power as in (4.1), we

require that all polynomials of degree less than 4 are reproduced by Qk; i.e., Qkg = g for

any g ∈ P3 and k ≥ 0.

To prove (4.1) we estimate the approximation error on a face T ∈ Kk
6 . Let g ∈ Pr−1 be

a polynomial approximating f on NdT . Then by the triangle inequality we have

‖Qkf − f‖Hs(T ) ≤ ‖Qkf −Qkg‖Hs(T ) + ‖Qkg − g‖Hs(T ) + ‖f − g‖Hs(T ) .

Applying locality, boundedness and polynomial reproduction we get

‖Qkf − f‖Hs(T ) ≤ (1 + ‖Q‖) ‖f − g‖Hs(NdT ) .

To complete the proof of (4.1) we need an estimate of the error made in locally approx-

imating f by a polynomial. If f were in class Cr, then we could take the approximation g

as a degree r − 1 Taylor polynomial of f , and by a simple estimate from the remainder in

Taylor’s Theorem we could conclude

‖f − g‖Hs(NdT ) ≤ C(diamNdT )
r−s sup

NdT
|Drf | .

We show, in Section 4.2, that an averaged version of a Taylor polynomial is well defined for

a weakly differentiable function. The Bramble-Hilbert Lemma gives the bound

‖f − g‖Hs(NdT ) ≤ C(diamNdT )
r−s|f |Hr(NdT ) .

The neighborhoods NdT are all similar and satisfy diam(NdT ) = C(12)
k for some con-

stant C. By summing the local errors we then get

‖Qkf − f‖2Hs =
∑

T∈Kk
6

‖Qkf − f‖2Hs(T )

≤ C(12)
2(4−s)k ∑

T∈Kk
6

|f |2H4(NdT )
. (4.2)

Any face T0 ∈ Kk
6 is summed over many times in the sum above, and the number of times is

independent of T0. Therefore, the sum on the right of (4.2) is bounded by C|f |2H4 , proving
(4.1).
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We want to apply this technique to the problem of approximation on Kn by subdivision

functions. Specifically, we want to identify the properties of a quasi-interpolant so that we

can prove the approximation error bound (3.26). The main challenge we face is reproducing

polynomials. The norms in (3.26) are computed in characteristic coordinates. Let Pr(Kn)

be the space of polynomials of degree at most r in characteristic coordinates. Clearly, if

g ∈ Pr(Kn) is to be reproduced by a quasi-interpolant, then we must have g ∈ S(Kn). This

is a severe limitation. Constant functions are in S(Kn), and linear polynomials are in S(Kn),

since they are components of a characteristic map. However, P2(Kn) is not contained in

the space of Loop’s subdivision functions, unless the central vertex is regular (see Prautzsch

and Reif [15]).

Constructing a quasi-interpolant that only reproduces P1(Kn) would only prove second-

order approximation power, but Theorem 2 states that the approximation power of Loop’s

subdivision functions is order 3. To show that subdivision functions have this higher-order

approximation power, we require that the quasi-interpolant also locally reproduce affine

quadratic polynomials away from the central vertex.

Throughout this chapter we assume that S is a CR,1
loc -subdivision scheme and that S(Kn)

is contained in Hs
Λ,loc(Kn), with s ≤ R. In particular, to apply the theory developed here

to prove Theorem 2 we have a C2,1loc -subdivision scheme, and Loop’s subdivision functions

are in H2
Λ,loc(Kn), by Theorem 42. Let λ be the subdominant eigenvalue of the subdivision

map for valence n, and let λmax = max{λ, 12}. Throughout this chapter, C will denote a

generic constant whose value can change from line to line.

In Section 4.1, we define the properties of a quasi-interpolant and state the local approx-

imation theorem. We review polynomial approximation in Sobolev spaces in Section 4.2.

In Section 4.3, we prove our local approximation theorem. In Section 4.4, we develop an

equivalent characterization of a quasi-interpolant, one that is easier to verify.
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4.1 Approximation by Quasi-Interpolants

We begin with the formal definition of a quasi-interpolant on the n−regular complex Kn.

Consider a family of linear operators

Q = {Qk : L1Λ,loc(Kn)→ S(Kk
n) for k ≥ 0}.

We say that Qk is rotation equivariant if the following diagram commutes

L1Λ,loc(Kn)
Qk

−−−−→ S(Kk
n)

g∗
y

yg∗

L1Λ,loc(Kn) −−−−→
Qk

S(Kk
n) ,

(4.3)

where g is an element of the automorphism group of Kn as defined in (2.11).

We say that Q is contraction equivariant if the following diagram commutes for all k ≥ 0

L1Λ,loc(Kn)
Qk

−−−−→ S(Kk
n)

c∗
y

yc∗

L1Λ,loc(Kn) −−−−→
Qk−1

S(Kk−1
n ) ,

(4.4)

where c is the contraction map defined in Section 2.3. Observe that if Q is contraction

equivariant then

Qk = c−k∗Q0ck∗ for all k ≥ 0,

i.e., Q is completely determined by Q0. Also, if Q is contraction equivariant and Qk is

rotation equivariant for some k, then Qk is rotation equivariant for all k ≥ 0.

Suppose Q is local with support width d, as defined in (3.23). Observe that if K ⊂ Kk
n

is a simplicial surface and N ⊂ |Kn| is a neighborhood containing |NdK|, then Q induces

an operator

Qk : L1Λ,loc(N)→ S(Kk
n)|K , (4.5)

where S(Kk
n)|K denotes restriction to |K|. Recall, from Section 2.7, that N c

dT ⊂ |Kn| is
the closed circumscribing ball in equivariant characteristic coordinates for each face T ∈
Face(Kk

n), and N c
dK = ∪N c

dT for any sub-simplicial surface K ⊂ Kk
n, where the union is

taken over faces T ∈ K.
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We say that Q is uniformly Hs
Λ-bounded if there exists a constant ‖Q‖ such that the

inequality

‖Qkf‖Hs
Λ
(K) ≤ ‖Q‖ ‖f‖Hs

Λ
(Nc

d
K) (4.6)

holds for every simplicial surface K ⊂ Kk
n.

Given a local family Q with support width d, we say that Qk is order r if the following

two conditions are satisfied:

(i) Qkf = f for f a polynomial of degree less than r − 1 in characteristic coordinates.

(ii) Qkf = f on |K| for any (a) subcomplex K ⊂ Kk
n such that |NdK|◦ is an affine coor-

dinate neighborhood, and (b) polynomial f of degree less than r in affine coordinates.

We say Q is order r if Qk is order r for all k ≥ 0.

Definition 44. A local, rotation and contraction equivariant, uniformly H s
Λ-bounded family

of order r is called a quasi-interpolant on Kn.

The key theorem of this chapter, which follows, shows that a quasi-interpolant on Kn

satisfies the approximation error bound (3.26).

Theorem 45. Suppose that Q is a quasi-interpolant on Kn with s < r ≤ R+1. Then given

a simplicial surface K ⊂ Kk0
n with |K| ⊂ |N1(v0,Kn)| and any ε > 0, there exists a constant

Cε = C(ε, n,K) such that for any k ≥ k0, the approximation error satisfies the estimate

‖Qkf − f‖Hs
Λ
(K) ≤ Cελ

(r−s−ε)k
max ‖f‖Hr

Λ
(Nc

d
K). (4.7)

If λ < 1
2 , we can take ε = 0.

4.2 Background on Averaged Taylor Polynomials

To prove Theorem 45, we approximate f ∈ Hr
Λ(N

c
dK) locally by a polynomial in character-

istic coordinates. The naive choice is the Taylor polynomial, but it is not well defined since

the derivatives of f are weak derivatives which may not be defined pointwise.
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Suppose that Ω is a domain in Rm and that f ∈ L1loc(Ω) has weak derivatives Dαf for

all |α| < r. We can define a weak Taylor polynomial of order r (i.e., of degree less than r)

by

T̃ ry f(x) =
∑

|α|<r

1

α!
Dαf(y)(x− y)α, y ∈ Ω and x ∈ Rm. (4.8)

Notice that (4.8) is only defined in the sense of distributions; to obtain a bona fide polyno-

mial in x, we average (4.8) in the y variable with respect to a weighting function.

Definition 46. Suppose f ∈ L1Λ,loc(Ω) has weak derivatives D
αf for all |α| < r. Let

B = Bρ(y0) ⊂ Ω be a closed ball of radius ρ centered at y0. The order r Taylor polynomial

of f averaged over B is defined as

T rBf(x) =

∫

B

(
T̃ ry f(x)

)
φρ(y − y0) dy ,

where

φρ(y) =





cm ρ−m e
−
(
1−
(
|y|
ρ

)2)−1

if |y| < ρ

0 otherwise.

The constant cm is chosen so that ‖φ1‖L1 = 1.

Remark 47. Notice φρ ∈ C∞(Rm), and φρ is supported on Bρ(0). Also ‖φρ‖L1 = 1 for all

ρ > 0, and ‖φρ‖L∞ = cm e
−1ρ−m.

The approximation properties of averaged Taylor polynomials are given by the Bramble-

Hilbert Lemma. Recall, from Definition 31, the concepts of star-shaped with respect to a

ball and the chunkiness parameter γ(Ω) of a domain Ω.

Lemma 48 (Bramble-Hilbert [3]). Fix non-negative integers n and r, and a real number

γ0 ≥ 2. Let Ω be a domain in Rn such that γ(Ω) ≤ γ0, and let B be a ball of radius

ρ > 1
2ρmax(Ω) such that Ω is star-shaped with respect to B. Then there exists a constant

Cn,r,γ0 such that

|T rBf − f |Hm,p(Ω) ≤ Cn,r,γ0 diam(Ω)
r−m|f |Hr,p(Ω)

for any m = 0, . . . , r and f ∈ Hr,p(Ω). The constant Cn,r,γ0 can be chosen to depend only

on n, r and γ0.
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By imposing a bound on the diameter of Ω we can derive a bound on the full norm.

Corollary 49. Let r, n, γ0,Ω and B be as in the Bramble-Hilbert Lemma, with the additional

constraint diam(Ω) < d0, then for any s ≤ r

‖T rBf − f‖Hs,p(Ω) ≤ Cn,r,γ0 max{1, ds0}(s+ 1)1/p diam(Ω)r−s|f |Hr,p(Ω)

for any f ∈ Hr,p(Ω).

Proof. By Lemma 48, for any 0 ≤ m ≤ s we have

|T rBf − f |Hm,p(Ω) ≤Cn,r,γ0 diam(Ω)r−m|f |Hr,p(Ω)

≤Cn,r,γ0ds−m0 diam(Ω)r−s|f |Hr,p(Ω)

≤Cn,r,γ0 max{1, ds0} diam(Ω)r−s|f |Hr,p(Ω) .

Summing |T rBf − f |
p
Hm,p(Ω) for m = 0 to s completes the proof.

4.3 Proof of the Approximation Theorem

Fix k0 ≥ 0 and K ⊂ Kk0
n as in Theorem 45. For any k ≥ k0 and f ∈ Hr

Λ(N
c
dK) we

estimate the approximation error on |K| by summing the errors over each face. For each

face T ∈ Kk−k0 ⊂ Kk
n, let LT f be the order-r Taylor polynomial of f averaged over N c

dT ,

i.e.,

LT f = T rNc
d
T f.

By the triangle inequality, we have

‖Qkf − f‖2Hs
Λ
(K) =

∑

T∈Kk−k0

‖Qkf − f‖2Hs
Λ
(T )

≤
∑

T∈Kk−k0

(
‖f − LT f‖Hs

Λ
(T ) + ‖Qk(f − LT f)‖Hs

Λ
(T )

+ ‖QkLT f − LT f‖Hs
Λ
(T )

)2
.

Then by the Hs
Λ-boundedness of the quasi-interpolant, we get

‖Qkf − f‖2Hs
Λ
(K) ≤

∑

T∈Kk−k0

(
(1 + ‖Q‖)‖f − LT f‖Hs

Λ
(Nc

d
T ) + ‖QkLT f − LT f‖Hs

Λ
(T )

)2
.
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Another application of the triangle inequality yields the estimate

‖Qkf − f‖Hs
Λ
(K) ≤ (1 + ‖Q‖)


 ∑

T∈Kk−k0

‖f − LT f‖2Hs
Λ
(Nc

d
T )



1/2

+


 ∑

T∈Kk−k0

‖QkLT f − LT f‖2Hs
Λ
(T )



1/2

. (4.9)

In the next two sections, we conclude the proof of Theorem 45 by showing that each of

the terms on the right side of (4.9) is bounded by the right side of inequality (4.7).

4.3.1 Estimation of the First Term

Since |K| is contained in a bounded region |N1(v0,Kn)|, the diameter diamΛ(N
c
dT ) for

T ∈ Face(Kk−k0) is bounded independent of T , K, k0 and k, say diamΛ(N
c
dT ) < d0.

Observe that because N c
dT is a ball, its chunkiness parameter is 2. Applying Corollary 49

to the Bramble-Hilbert Lemma yields

‖f − LT f‖Hs
Λ
(Nc

d
T ) ≤ C diamΛ(N

c
dT )

r−s|f |Hr
Λ
(Nc

d
T ) , (4.10)

where the constant C = C2,r,2 max{1, ds0}
√
s+ 1 is independent of K, k and T .

Corollary 28 shows that a constant C1 exists such that for any T ∈ Face(N1(v0,Kn)
k)

we have a bound on the diameter diamΛ(N
c
dT ) ≤ C1λ

k
max. Substituting this bound into

(4.10) we get

‖f − LT f‖Hs
Λ
(Nc

d
T ) ≤ Cλ(r−s)kmax |f |Hr

Λ
(Nc

d
T ) . (4.11)

Summing the square of (4.11) over all T ∈ Face(Kk−k0) we get

∑

T∈Kk−k0

‖f − LT f‖2Hs
Λ
(Nc

d
T ) ≤ Cλ2(r−s)kmax

∑

T∈Kk−k0

|f |2Hr
Λ
(Nc

d
T ). (4.12)

The following proposition shows that the sum on the right side of (4.12) is bounded by

C|f |2Hr
Λ
(Nc

d
K) and hence by the full norm C‖f‖2Hr

Λ
(Nc

d
K). Therefore, the first term in (4.9) is

bounded by the right side of (4.7), as desired.
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Proposition 50. There exists a constant C such that for any simplicial surface K ⊂ Kk0
n ,

function f ∈ Hr,q
Λ (N c

dK), and integer k ≥ k0, the following inequality is satisfied


 ∑

T∈Kk−k0

|f |q
Hr,q
Λ
(Nc

d
T )




1
q

≤ C|f |Hr,q
Λ
(Nc

d
K) .

Proof. We write the semi-norm as an integral, using χNc
d
T to denote the characteristic

function of the set N c
dT ,

∑

T∈Kk−k0

|f |q
Hr,q
Λ
(Nc

d
T )

=
∑

|α|=r

∑

T

∫
χNc

d
T |Dαf(y)|q dy .

We exchange the order of the inner summation and integration. In the summation, the

domains of integration overlap. The function ηk(y), defined in (2.46), counts the num-

ber of overlapping balls. Using this function we replace repeated integration by a single,

appropriately weighted integral, specifically,

∑

T∈Kk−k0

|f |q
Hr,q
Λ
(Nc

d
T )
≤
∑

|α|=r

∫

Nc
d
Kk−k0

ηk(y)|Dαf(y)|q dy .

Proposition 30 shows that there is a bound ηk(y) < C. Thus

∑

T∈Kk−k0

|f |q
Hr,q
Λ
(Nc

d
T )
≤ C|f |q

Hr,q
Λ
(Nc

d
Kk−k0 )

.

Replacing the domain N c
dK

k−k0 with the larger domain N c
dK completes the proof.

4.3.2 Estimation of the Second Term

Each of the summands in the second term on the right side of (4.9) is a local error made in

approximating a polynomial of degree less than r. In the first part of this section, we derive

a general estimate for the approximation error of such a polynomial on a single face. Then

in the second part, we sum these errors and derive an estimate for the second term.

Polynomial Approximation

Observe that since Qk reproduces polynomials of degree at most r − 2 in characteristic

coordinates, only the degree r − 1 part of LT f contributes to the approximation error. So,
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given L ∈ Pr−1(Kn) we have the identity

QkL− L = QkLh − Lh , (4.13)

where Lh ∈ Phr−1(Kn) is the homogeneous part of L, and Phr−1(Kn) denotes the space of

homogeneous polynomials of degree r − 1.

Recall, from Section 2.7, that a face T ∈ Kk
n has an annulus index jT and that c−jT (T )

is either a face in the fundamental annulus |Ω0| or a face in N1(v0,Kn). The next lemma

shows that we can bound the approximation error on T in terms of the approximation error

on c−jT (T ) for a fixed homogeneous polynomial.

Lemma 51. For any face T ∈ N1(v0,Kn)
k and any polynomial L ∈ Phr−1(Kn), we have

‖QkL− L‖Hs
Λ
(T ) ≤ λ(r−s)jT ‖Qk−jTL− L‖Hs

Λ
(c−jT (T )) .

Proof. Since c(y) = λy in characteristic coordinates, its Jacobian determinant is λ2. Hence

for any m = 0, . . . , s we have

|QkL− L|2Hm
Λ
(T ) =

∑

|α|=m

∫

T
(DαQkL−DαL)2 dy

= λ2
∑

|α|=m

∫

c−1T
(c∗DαQkL− c∗DαL)2 dy .

Differentiating both the homogeneity identity λr−1L = c∗L and the contraction equivariance

identity (4.4) applied to a polynomial c∗QkL = λr−1Qk−1L yields

λr−1DαL = λ|α|c∗DαL

and

λr−1DαQk−1L = λ|α|c∗DαQkL

for any multi-index α. These two identities enable us to compute as follows:

|QkL− L|2Hm
Λ
(T ) = λ2

∑

|α|=m

∫

c−1T
(λr−1−m(DαQk−1L−DαL))2 dy

= λ2(r−m)|Qk−1L− L|2Hm
Λ
(c−1T ) . (4.14)
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Since |T | ⊂ |N1(v0,Kn)| we have jT ≥ 0 and so applying (4.14) jT times we get

‖QkL− L‖Hs
Λ
(T ) =

(
s∑

m=0

|QkL− L|2Hm
Λ
(T )

)1/2

≤
(
λ2(r−s)jT

s∑

m=0

|Qk−jTL− L|2
Hm
Λ
(c−jT (T ))

)1/2

≤ λ(r−s)jT ‖Qk−jTL− L‖Hs
Λ
(c−jT (T )) . (4.15)

To bound the approximation error of polynomials, we introduce a family of “polynomial

norms” on Phr−1(Kn), denoted by |L|q for 1 ≤ q ≤ ∞. Any L ∈ Phr−1(Kn) is given by

L(y) =
∑
|α|=r−1

1
α! cα y

α, and we define

|L|q = ‖{cα : |α| = r − 1}‖`q . (4.16)

We extend these to semi-norms on all of Pr−1(Kn) by |L|q = |Lh|q, where Lh ∈ Phr−1 is the

homogeneous part of L. Take the 2-norm as the default case |L| .= |L|2.

Lemma 52. There exists a constant C such that for any face T ∈ N1(v0,Kn)
k and poly-

nomial L ∈ Pr−1(Kn) we have the inequality

‖QkL− L‖Hs
Λ
(T ) ≤ CλjT (r−s)(12)

(k−jT )(r−s+1)|L| . (4.17)

Proof. By Lemma 51, it suffices to prove that (4.17) is satisfied for faces T ∈ N1(v0,Kn)
k

such that jT = 0. Such a face is either a face in N1(v0,Kn) or a face in the fundamental

annulus Ωk0. Next, observe that because the space Phr−1 is finite-dimensional, the operator

L 7→ QkL − L is Hs
Λ(T )-bounded for any particular face T . Therefore, there is a constant

C such that (4.17) holds for any finite collection of faces. Thus, we need only show that

(4.17) holds for any face T ∈ Ωk0 and any k sufficiently large, say k ≥ k′, since there are

only a finite number of faces T ∈ N1(v0,Kn)
k with k < k′ and jT = 0.

By the rotation equivariance of Q, it suffices to find a constant C such that (4.17)

holds for all T contained in a given wedge W of Kn. Let k′ > 0 be the smallest integer

such that Ω̃ = N c
d(Ω0 ∩W )k

′
is an affine coordinate neighborhood, and let x denote the
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affine coordinate variable. For any T ∈ Face(Ω0 ∩W )k, with k ≥ k′, and any polynomial

g(x) ∈ Pr−1 we have

‖QkL− L‖Hs
Λ
(T ) = ‖(Qk − I)(L− g)‖Hs

Λ
(T ) ≤ (‖Q‖+ 1)‖L− g‖Hs

Λ
(Nc

d
T ) (4.18)

by the polynomial reproducing and boundedness properties of Q. The transition function

y = τ(x) from affine to characteristic coordinates is a CR,1
loc -diffeomorphism. So both L

and g are in Hr
A(Ω̃) = Hr

Λ(Ω̃), where the subscript A denotes computations in the affine

coordinate system. By Proposition 40 the two norms are equivalent, so

‖L− g‖Hs
Λ
(Nc

d
T ) ≤ C‖L− g‖Hs

A
(Nc

d
T ) , (4.19)

where the constant C, from the change of coordinates, is independent of k and T . Propo-

sition 32 shows that there are constants k′′ and γ0 such that the affine coordinate regions

N c
dT for T ∈ Face(Ω0 ∩ W )k and k > k′′ are star-shaped with a chunkiness parameter

satisfying γA(N
c
dT ) < γ0. Furthermore, for all such T , there is an upper bound on the

diameter diamA(N
c
dT ) < d0. Thus, by Corollary 49 to the Bramble-Hilbert Lemma, there

is a polynomial g ∈ Pr−1 such that

‖L− g‖Hs
A
(Nc

d
T ) ≤ C diamA(N

c
dT )

r−s|L|Hr
A
(Nc

d
T ) . (4.20)

Lemma 29 gives a bound on the diameters

diamA(N
c
dT ) < C(12)

k. (4.21)

Then, by Hölder’s inequality and Lemma 29, we have

|L|Hr
A(N

c
d
T ) ≤ ‖L‖Hr,∞

A (Ω̃)
areaA(N

c
dT )

1/2 ≤ C‖L‖
Hr,∞
A (Ω̃)

(12)
k ≤ C|L|(12)k. (4.22)

The final inequality in (4.22) follows since |L| and ‖L‖
Hr,∞
A

(Ω̃)
are both norms on a finite-

dimensional space Phr−1(Kn), and are hence equivalent. Combining inequalities (4.18) to

(4.22) proves (4.17) for T ∈ Face((Ω0 ∩W )k) and k > max{k′, k′′}.
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Summing the Approximation Errors

We proceed by summing the approximation errors to get a bound on the second term in

(4.9). For any k ≥ k0 let

Sum =
∑

T∈Kk−k0

‖QkLT f − LT f‖2Hs
Λ
(T ) .

Applying Lemma 52 gives

Sum ≤ C
∑

T∈Kk−k0

λ2jT (r−s)(12)
2(k−jT )(r−s+1)|LT f |2. (4.23)

We now express the polynomial norm |LT f | in terms of a Sobolev norm. Since LT f ∈
Pr−1(Kn), the derivatives of order r − 1 are constant, so for any 1 ≤ q ≤ ∞ we have

|LT f |q
Hr−1,q
Λ

(Nc
d
T )

=
∑

|α|=r−1

∫

Nc
d
T
|DαLT f |q dy = |LT f |qq areaΛ(N

c
dT )

by the definition of the polynomial norm (4.16). Solving for |LT f |q and noting that the

polynomial 2-norm is equivalent to the polynomial q-norm gives

|LT f | ≤ Cq |LT f |q = Cq areaΛ(N
c
dT )

−1/q |LT f |Hr−1,q
Λ

(Nc
d
T )
,

where Cq is the constant relating the norms. Corollary 27 gives a lower bound on the diam-

eter of the circular neighborhoods N c
dT and hence a lower bound on the area. Substituting

this into the previous inequality yields the inequality

|LT f | ≤ Cq

(
λ2jT (12)

2(k−jT )
)−1/q

|LT f |Hr−1,q
Λ

(Nc
d
T )
. (4.24)

The next lemma bounds |LT f |Hr−1,q
Λ

(Nc
d
T )

in terms of a Sobolev norm of f .

Lemma 53. There exists a constant C such that

|LT f |Hr−1,q
Λ

(Nc
d
T )
≤ C|f |

Hr−1,q
Λ

(Nc
d
T )

(4.25)

for any function f ∈ Hr
Λ(N

c
dT ), face T ∈ Kk

n, and exponent 1 ≤ q <∞.
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Proof. From the Sobolev Embedding Theorem [1] there is an embedding H r
Λ(N

c
dT ) ↪→

Hr−1,q
Λ (N c

dT ) for any q < ∞. From the definition of an averaged Taylor polynomial (Def-

inition 46), one easily shows that DαT rBf = T
r−|α|
B Dαf for |α| ≤ r − 1. Thus for any

multi-index |α| = r − 1, the constant function DαLT f is given by

DαLT f = DαT rNc
d
T f = T 1Nc

d
TD

αf =

∫
φρ(y − y0) Dαf dy,

where N c
dT = Bρ(y0). Applying Hölder’s inequality with p as the conjugate exponent to q

yields

|DαLT f | ≤ ‖φρ‖Lp‖Dαf‖Lq
Λ
(Nc

d
T )

≤ (πρ2)1/p‖φρ‖L∞‖Dαf‖Lq
Λ
(Nc

d
T ) (since Bρ = supp(φρ))

≤ Cρ2/pρ−2‖Dαf‖Lq
Λ
(Nc

d
T ) (by Remark 47)

≤ Cρ−2/q‖Dαf‖Lq
Λ
(Nc

d
T ) (by 1

q +
1
p = 1). (4.26)

We compute the semi-norm on the left side of (4.25) by

|LT f |q
Hr−1,q
Λ

(Nc
d
T )

=
∑

|α|=r−1
‖DαLT f‖qLq

Λ
(Nc

d
T )

=
∑

|α|=r−1
πρ2 |DαLT f |q.

Substituting inequality (4.26) proves the Lemma.

We now substitute (4.24) with exponent 2q into (4.23), and then apply Lemma 53 to

obtain the estimate

Sum ≤ Cq
∑

T∈Kk−k0

λ
2jT (r−s−1q )(12)

2(k−jT )(r−s+1−1q )|f |2
Hr−1,2q
Λ

(Nc
d
T )
. (4.27)

Let p be the conjugate exponent to q. Rewriting the exponents in (4.27) in terms of p we

get

Sum ≤ Cp
∑

T∈Kk−k0

λ
2jT (p(r−s−1)+1) 1p (12)

2(k−jT )(p(r−s)+1) 1p |f |2
Hr−1,2q
Λ

(Nc
d
T )
. (4.28)

Now, we apply Hölder’s inequality to the sum on the right side of (4.28) to get

Sum ≤ Cp A

( ∑

T∈Kk−k0

|f |2q
Hr−1,2q
Λ

(Nc
d
T )

)1
q

, (4.29)
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where

A =

( ∑

T∈Kk−k0

λ2jT (p(r−s−1)+1)(12)
2(k−jT )(p(r−s)+1)

)1
p

. (4.30)

By Proposition 50 we see that the last term in (4.29) is bounded by C|f |2
Hr−1,2q
Λ

(Nc
d
K)

.

Then by the Sobolev Embedding Theorem, there is an embeddingHr
Λ(N

c
dK) ↪→ Hr−1,2q

Λ (N c
dK)

for any K and q; i.e., there is a constant C such that ‖f‖
Hr−1,2q
Λ

(Nc
d
K)
≤ C‖f‖Hr

Λ
(Nc

d
K). Con-

sequently,

Sum ≤ CpA‖f‖2Hr
Λ
(Nc

d
K). (4.31)

We still need to estimate A. The summands in (4.30) only depend on the annulus index

jT , which runs from 0 to k. Furthermore, the number of faces T ∈ Kk−k0 with a given

annulus index j is bounded by C22(k−j). Thus

A ≤ C




k∑

j=0

λ2j(p(r−s−1)+1)(12)
2(k−j)p(r−s)




1
p

= C(12)
2k(r−s)




k∑

j=0

(
λ2p(r−s−1)+2(12)

−2p(r−s)
)j



1
p

. (4.32)

Let R = λ2p(r−s−1)+2(12)
−2p(r−s) be the ratio between consecutive terms in the geometric

series of (4.32). We consider two cases. First, suppose λ < 1
2 , which implies λmax =

1
2 . In

the limit, as p→ 1, we have R→ ( λ
1/2)

2(r−s) < 1. So there exists a p > 1 such that R < 1,

and for any k > 0, the sum in (4.32) is a partial sum of a convergent geometric series. In

particular, these partial sums are bounded by some constant C, and therefore

A < C λ2k(r−s)max .

In the other case, we have 1
2 ≤ λ, which implies λmax = λ. In this case, R > 1 for any p > 1.

So we use the estimate
∑k
0 R

j < CpR
k in inequality (4.32) yielding the inequality

A < Cp(
1
2)
2k(r−s)Rk/p = Cpλ

2k(r−s−1+1p ) = Cpλ
2k(r−s−1q ) .

For a given 0 < ε < 1, let q = 1/ε, then we have

A < Cε λ
2k(r−s−ε)
max . (4.33)
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Combining the estimates of A with (4.31) shows that the second term on the right side

of (4.9) is bounded by the right side of (4.7), completing the proof of Theorem 45.

4.4 An Alternative Characterization of a Quasi-Interpolant

We present an alternative characterization of a quasi-interpolant. We replace the uniform

boundedness property (4.6) with semi-norm estimates in affine coordinates. These estimates

only involve the level zero quasi-interpolant Q : L1Λ,loc(Kn)→ S(Kn) and estimates on faces

T ∈ Kn. In Chapter 5, to verify that the map we construct is a quasi-interpolant, we will

show that it satisfies the alternative boundedness criteria.

Given a local linear map

Q : L1Λ,loc(Kn)→ S(Kn) (4.34)

with support width d, we can define a contraction equivariant family of linear operators by

Q = {Qk = c−k∗Qck∗ : k ≥ 0}. (4.35)

We define a set of conditions on Q that ensure Q is a quasi-interpolant.

Let W be a wedge in Kn. We define a simplicial neighborhood Wcen(d) ⊂ W of the

central vertex in terms of d so that N c
d(W \Wcen(d)) is an affine coordinate neighborhood.

Let Wcen(d) ⊂W be the subcomplex given by

Wcen(d) =
⋃
T such that T ∈ Face(W ) and v0 ∈ N c

dT . (4.36)

Recall that T is the subcomplex containing T and all of its subsets. The contraction map

c : |W | → |W | generates a group action on |W |. Using Wcen(d), we define a fundamental

region with respect to this group action. Specifically, we define W0 ⊂W by

W0 =
⋃
T such that T ∈ Face(W ) and |cT | ⊂ |Wcen(d)| .

Let (N c
d(W \Wcen(d)), x) be an affine coordinate system, and denote Sobolev norms com-

puted in this affine coordinate system by HA .

Definition 54. We say a rotation equivariant map Q : L1Λ,loc → S(Kn) satisfies the

Hs-alternative boundedness criteria if there exists a constant ‖Q‖ such that for any
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function f ∈ Hm
A (N c

dT ), face T ∈ W \ Wcen(d), and integer 0 ≤ m ≤ s, the following

semi-norm estimates hold:

|Qf |Hm
A
(T ) ≤ ‖Q‖ |f |Hm

A
(Nc

d
T ) . (4.37)

Lemma 55. Suppose the rotation equivariant linear map Q : L1Λ,loc(Kn) → S(Kn) (i) is

local with support width d, as in (3.23) with k = 0, (ii) is order r, and (iii) satisfies the

Hs-alternative boundedness criteria. Then (4.35) is a quasi-interpolant on Kn which is

uniformly Hs
Λ-bounded, has support width d, and is order r.

We first prove a technical Proposition.

Proposition 56. Let Ω and Ω′ be domains in R2 and let c(x) = λx be a dilation map on

R2 with pull back c∗ : f 7→ f ◦ c. Suppose L : Hs(Ω)→ Hs(Ω′) is a linear map that satisfies

the following semi-norm estimates

|Lf |Hm(Ω′) ≤ ‖L‖ |f |Hm(Ω) (4.38)

for some constant ‖L‖ and each 0 ≤ m ≤ s. Then for each 0 ≤ m ≤ s we have

‖c−1∗Lc∗f‖Hm(cΩ′) ≤ ‖L‖ ‖f‖Hm(cΩ) for f ∈ Hm(cΩ).

Proof. Fix 0 ≤ m ≤ s and f ∈ Hm(cΩ) and compute as follows:

‖c−1∗Lc∗f‖2Hm(cΩ′) =
m∑

i=0

|c−1∗Lc∗f |2Hi(cΩ′)

=

m∑

i=0

λ−2(i−1)|Lc∗f |2Hi(Ω′) by Proposition 41

≤
m∑

i=0

λ−2(i−1)‖L‖2 |c∗f |2Hi(Ω) by (4.38)

=
m∑

i=0

‖L‖2 |f |2Hi(cΩ) by Proposition 41

= ‖L‖2 ‖f‖2Hm(cΩ) .

We break the proof of Lemma 55 into five steps.
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Step 1. We first show that Q satisfies the locality and polynomial reproducing properties in

Section 4.1. To prove locality we consider k ≥ 0, a simplicial surface K ⊂ Kk
n and a function

f ∈ L1,locΛ (Kn) such that f ≡ 0 on |NdK|. We need to show that Qkf = c−k∗Qck∗f ≡ 0 on

|K|. We have ck∗f ≡ 0 on |c−kNdK| = |Ndc
−kK|, and since c−kK ⊂ Kn we have Qck∗f ≡ 0

on |c−kK| by the hypothesis for Q. Therefore Qkf = c−k∗Qck∗f ≡ 0 on |K|. Polynomial

reproduction follows since c is linear in either affine or characteristic coordinates.

In the remaining steps we show that (4.6) holds on each face T ∈ W k. From this, it

follows that (4.6) holds for all simplicial surfaces K ⊂ Kk
N by applying rotational equivari-

ance, and summing over all the faces in K. Therefore, we have shown that Q is uniformly

Hs
Λ-bounded.

Step 2. In this step we show

‖Qkf‖Hm
A (T )

≤ ‖Q‖ ‖f‖Hm
A (N

c
d
T ) (4.39)

for any function f ∈ Hm
A (N c

dT ), face T ∈ W k
0 , and integer 0 ≤ m ≤ s. This follows from

Proposition 56 with domains Ω′ = c−kT and Ω = N c
d(c

−kT ), dilation map ck, and operator

Q.

Step 3. For either k ≥ 0 and T ∈W k
0 , or k = 0 and T ∈Wcen(d) we prove

‖Qkf‖Hm
Λ
(T ) ≤ C ‖Q‖ ‖f‖Hm

Λ
(Nc

d
T ) for 0 ≤ m ≤ s. (4.40)

Since Q is linear, (4.40) holds for k = 0 and any single face T ∈ W . Since there are

only finitely many faces T ∈ Wcen(d), there is a constant C such that (4.40) holds for

all T ∈ Wcen(d). So we need only consider faces T ∈ W k
0 . The transition function to

characteristic coordinates y = τ(x) is class CR on the closed and bounded set N c
d(W0).

Therefore by Proposition 40 and (4.39) we get

1

C
‖Qkf‖Hm

Λ
(T ) ≤ ‖Qkf‖Hm

A
(T ) ≤ ‖Q‖‖f‖Hm

A
(Nc

d
T ) ≤ C‖Q‖‖f‖Hm

Λ
(Nc

d
T ). (4.41)

Step 4. For either k ≥ 0 and T ∈W k
0 , or k = 0 and T ∈Wcen(d) we prove

|Qkf |Hm
Λ
(T ) ≤ C|f |Hm

Λ
(Nc

d
T ) for 0 ≤ m ≤ s. (4.42)
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Suppose g ∈ Pm−1(Kn) is a characteristic coordinate polynomial. Notice Pm−1(Kn) ⊂
Pr−2(Kn), and therefore

|Qkf |Hm
Λ
(T ) = |Qk(f − g)|Hm

Λ
(T ), (4.43)

since Qk reproduces Pr−2(Kn). Then applying (4.40) we get

|Qkf |Hm
Λ
(T ) ≤ ‖Qk(f − g)‖Hm

Λ
(T ) ≤ C‖(f − g)‖Hm

Λ
(Nc

d
T ) . (4.44)

In particular, we can take g = TmNc
d
T f as the averaged Taylor polynomial approximation.

The chunkiness parameter for any disk is 2, so by Corollary 49 we get

‖f − TmNc
d
T f‖Hm

Λ
(Nc

d
T ) ≤ C|f |Hm

Λ
(Nc

d
T ), (4.45)

where the constant C is independent of T and k. Substituting (4.45) into (4.44) gives (4.42).

Step 5. We show that the uniform boundedness property (4.6) holds for any face T ∈W k

and any k ≥ 0. Now c−kT ∈ Face(W ), and we consider two cases: (i) c−kT /∈ Face(Wcen(d))

and (ii) c−kT ∈ Face(Wcen(d)). In case (i) we have c−kT in a region Wj = c−jW0 ⊂ W for

some j ≥ 0. Let T̃ = cjc−kT = cj−kT , which is a face in W j
0 . In case (ii) we set j = 0 and

T̃ = c−kT ∈ Face(Wcen(d)).

Now (4.6) follows from Step 4 and Proposition 56, where Proposition 56 is applied with

linear map L = Qj , dilation ck−j , and domains Ω = N c
d T̃ and Ω′ = T̃ . Indeed, with these

substitutions, the hypothesis (4.38) becomes

|Qjf |
Hm
Λ
(T̃ )
≤ C |f |

Hm
Λ
(Nc

d
T̃ )
,

which follows from Step 4. Therefore, the conclusion of Proposition 56 implies (4.6) since

c−(k−j)∗Qjc(k−j)∗ = c−k∗Qck∗ = Qk .
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Chapter 5

CONSTRUCTING QUASI-INTERPOLANTS

In this chapter we complete the proof of the main result, Theorem 2, by constructing

a quasi-interpolant on Kn for Loop’s subdivision functions. The main result follows from

the global approximation theorem, Theorem 43 in Chapter 3, and a bound on the local

approximation error of the quasi-interpolant Qk given by

‖Qkf − f‖
Hs
Λ
(K̂n)

≤ Cελ
(r−s−ε)k
max ‖f‖

Hr
Λ
(Nc

dn
K̂n)

, (5.1)

where dn is the support width of Qk on Kn and K̂n = N3(v0,K
2
n). Theorem 45 in Chapter 4

shows that the local approximation bound (5.1) is satisfied by a quasi-interpolant of order

3. To be precise, Theorem 2 is implied by the following theorem.

Theorem 57. For Loop’s subdivision scheme there exists a quasi-interpolant on Kn of order

3, which is uniformly H2
Λ-bounded for each valence n.

A quasi-interpolant on Kn is a family of linear maps Qk : L1Λ,loc(Kn)→ S(Kk
n) satisfying

the conditions of Definition 44. Recall, by Lemma 55, that to define Qk we need only

construct the map

Q : L1Λ,loc(Kn)→ S(Kn) ,

and then define Qk in general by Qk = c−k∗Qck∗. The linear map Q must be rotation

equivariant, local, bounded, and reproduce a class of polynomials.

To show that Q is local and of order 3 we need to demonstrate the following:

(i) There exists a constant d such that for any simplicial sub-surface K ⊂ Kn, we have

the implication

if f ≡ 0 on |NdK| then Qf ≡ 0 on |K|. (5.2)

(ii) Linear polynomials in characteristic coordinates are reproduced by Q.
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(iii) Local quadratic polynomials in affine coordinates, sufficiently far from the central

vertex, are reproduced by Q. Specifically, there is some d such that for any face

T ∈ Kn with |NdT | contained in an affine coordinate neighborhood, then Qf = f on

|T | for f a polynomial of degree at most 2 in affine coordinates on |NdT |.

Notice that the constants d appearing in (i) and (iii) can be chosen to be the same by

taking the largest of the two. The minimum value d satisfying both (i) and (iii) is called

the support width of Q. Also recall from Theorem 43 that the support width dn for the

quasi-interpolant on Kn is allowed to depend on the valence n.

To show that Q satisfies the H2-alternative boundedness criteria we must verify the

semi-norm estimates

|Qf |Hm
A (T )

≤ ‖Q‖ |f |Hm
A (N

c
d
T ) (5.3)

for m = 0, 1 or 2 and any face T ∈ W \Wcen(d). Notice in particular that these estimates

are computed in affine coordinates away from the central vertex.

We construct Q as a composition of three maps

Q = S∞ ◦A ◦ R .

The operator R : L1Λ,loc(Kn) → CN(Kn) is called the restriction operator. The averaging

operator A : CN(Kn)→ CN(Kn) averages the neighbors at each vertex, and S∞ : CN(Kn)→
S(Kn) is the subdivision limit operator for Loop’s subdivision scheme.

We define restriction and averaging so that they are rotation equivariant. Then since

the subdivision operator S∞ is also rotation equivariant, the composition Q is rotation

equivariant, as can be seen from the following commutative diagram

L1Λ,loc(Kn)
R−−−−→ CN(Kn)

A−−−−→ CN(Kn)
S∞−−−−→ S(K)

σ∗
y

yσ∗
yσ∗

yσ∗

L1Λ,loc(Kn) −−−−→
R

CN(Kn) −−−−→
A

CN(Kn) −−−−→
S∞

S(K) ,

(5.4)

where σ is a rotation on Kn.

The technique of decomposing the quasi-interpolant into components which are analyzed

separately is motivated by Kowalski [12]. In this paper, Kowalski studied approximation
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by box splines in Sobolev spaces on Rn. Since our semi-norm estimates are local, in the

neighborhood of a face T away from v0, and are computed in affine coordinates, we can

easily adapt the theory from this paper. Our development is slightly different though since

we need results on domain of R2 instead of all of R2.

In Section 5.1 we review the properties of box splines. In Section 5.2 we define the

restriction operator R and show that it and the subdivision limit operator S∞ satisfy the

necessary semi-norm estimates. In Section 5.3 we derive conditions that the averaging

operator must satisfy. These conditions are represented by a linear system of equations

at each vertex of Kn. In the remaining sections, we prove that the linear systems have

satisfactory solutions.

5.1 Box Splines

Loop’s subdivision functions are locally given by box splines away from the extraordinary

vertices. Box splines are a multi-dimensional generalization of uniform B-splines. The spline

functions generated by Loop’s subdivision on a regular grid are bivariate splines defined on

a 3-direction grid. We present only a quick catalogue of the needed results. A thorough

presentation of box splines may be found in deBoor, Höllig and Riemenschneider [6].

We are interested in bivariate box splines on a 3-direction equilateral grid in R2, i.e.

a regular embedding of K6 into R2. The grid is defined by a pair of linearly independent

direction vectors ξ1 and ξ2 ∈ R2, which in turn define a third direction vector ξ3 = ξ1 + ξ2.

We use the 3-direction equilateral grid defined by

X = [ξ1, ξ2, ξ3] =




1
2

1
2 1

−
√
3
2

√
3
2 0


 . (5.5)

For any multi-index β ∈ Z3+, we define the direction set Xβ as a 2× |β| matrix given by

Xβ = [

β1︷ ︸︸ ︷
ξ1, . . . , ξ1,

β2︷ ︸︸ ︷
ξ2, . . . , ξ2,

β3︷ ︸︸ ︷
ξ3, . . . , ξ3] ,

which we also interpret as a linear map Xβ : R|β| → R2.
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Definition 58. Given a multi-index β ∈ Z3+, we define the associated box spline basis

function as

MXβ (x) = vol
(
(Xβ)−1(x) ∩ [0, 1]|β|

)
/
√

det(Xβ(Xβ)t)

for x ∈ R2. Here (Xβ)−1(x) is a (|β| − 2)−dimensional subspace of R|β| and vol is the

(|β| − 2)-dimensional volume.

We write Mβ for MXβ when the direction set X is clear from context. We state a few

general properties of box splines.

Proposition 59. For any multi-index β ∈ Z3+, with at most one component that is zero,

the box spline basis function Mβ satisfies the following:

(i) Mβ ≥ 0 and supp(Mβ) = Xβ([0, 1]|β|).

(ii)
∫
Mβ = 1.

(iii)
∑

v∈K6Mβ(x− v) ≡ 1.

(iv) Mβ is a polynomial of degree at most |β| − 2 on each face of K6.

(v) Mβ ∈ Cm−1(R2), where m = |β| − βi − 1 and βi is the largest index of β. Moreover,

Mβ ∈ Cm−1,1, that is, the order m − 1 derivatives of Mβ are Lipschitz continuous,

since Mβ consists of a finite number of pieces where each is smooth to its boundary.

A spline function is a linear combination of translates of a box spline basis function of

the form

f(x) =
∑

v∈K6
uvMβ(x− v), (5.6)

where the sum is taken over vertices in K6. For any point x ∈ R2 and region Ω ⊂ R2 we

define the index sets for the direction set Xβ by

J(x, β) = {x−Xβ(0, 1)2} ∩ Vertex(K6) and J(Ω, β) =
⋃

x∈Ω
J(x, β) . (5.7)
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The index set J(x, β) or J(Ω, β) contains all indices v ∈ Vertex(K6), such that Mβ(· − v) is
non-zero on x or Ω respectively. To define a box spline on a region, we only need coefficients

on the index set. For any region Ω ⊂ R2 with f given by (5.6) we have

f(x) =
∑

v∈J(Ω,β)
uvMβ(x− v) for x ∈ Ω. (5.8)

To compute the Sobolev norm of a spline function we must take its derivatives. The

derivative of a box spline is another box spline of lower order. We define a backward

difference operator ∇ξi = ∇i for i = 1, 2 or 3 acting on a continuous function f ∈ C(R2)

by ∇if(x) = f(x) − f(x − ξi), and we let ∇Xα = ∇α = ∇α1
ξ1
∇α2
ξ2
∇α3
ξ3
, for α ∈ Z3+, denote

higher-order differences. We also apply these operators to control nets. For u ∈ CN(K6)

we define ∇iu by (∇iu)v = uv − uv−ξi . Also we define a centered difference operator

(∇c
Xβf)(x) = (∇Xβf)(x+ c), where c = 1

2(β1ξ1+β2ξ2+β3ξ3). Note the centered difference

operator is not affected by a sign change or permutation in the direction set. Specifically,

if Y = X · diag(±1,±1,±1) · P is another direction set, differing only by the orientation

of the individual directions and a permutation matrix P , then ∇c
Xβ = ∇c

Y β . Also we

define directional derivative operators Dif = ξi,1
∂f
∂x1

+ ξi,2
∂f
∂x2

and higher-order differential

operators Dα = Dα1
1 D

α2
2 D

α3
3 .

The key differentiation identity for a box spline basis function Mβ is that for any α ≤ β

(meaning αi ≤ βi for all i) we have

DαMβ = ∇αMβ−α. (5.9)

Applying this identity to the box spline function (5.8) on a subcomplex L ⊂ K6 we get

Dαf(x) =
∑

(∇αu)vMβ−α(x− v) for x ∈ |L| , (5.10)

where the sum is taken over all vertices v ∈ J(L, β) such that (∇αu)v is defined.

For each multi-index β ∈ Z3+, the truncated power function Tβ is a simpler piecewise

polynomial function related to Mβ by the identity

Mβ = ∇βTβ . (5.11)

The truncated power function Tβ is defined by

Tβ(x) = vol
(
(Xβ)−1(x) ∩ R|β|+

)
/
√

det(Xβ(Xβ)t),
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where Rn
+ = {(x1, . . . , xn) : x1 ≥ 0}. It is a polynomial on each face of K6, is homogeneous

of degree |β| − 2, and agrees with the box spline basis function Mβ in the neighborhood of

the origin. A box spline function with bounded support can be represented as a truncated

power series. Suppose uv is zero for all but finitely many v ∈ K6, then f(x) given by (5.6)

may be written as

f(x) =
∑

v∈K6
uv(∇βTβ)(x− v) =

∑

v∈K6
(∇βu)vTβ(x− v) . (5.12)

Example: Loop’s subdivision on a regular equilateral grid generates subdivision limit

functions which are box spline functions. Using equilateral affine coordinates, the box spline

basis function is M222, shown in Figure 5.1(a), with support shown in Figure 5.1(b). The

basis function, and hence Loop’s subdivision functions, are piecewise quartic polynomials

and C2. The truncated power function is composed of two non-zero polynomial pieces as

shown in Figure 5.1(c). These polynomial pieces can be computed explicitly as

T+(x) = 2x41 − 4x21x
2
2 +

16
3
√
3
x1x

3
2 − 2

3x
4
2 (5.13)

and

T−(x) = 2x41 − 4x21x
2
2 − 16

3
√
3
x1x

3
2 − 2

3x
4
2 . (5.14)

5.2 Boundedness of Loop’s Subdivision and Restriction

In this section we show that the subdivision limit operator for Loop’s scheme S∞ is bounded.

To do this we need Sobolev norms and semi-norms on CN(L) for an arbitrary simplicial sub-

surface L ⊂ K6. In this section, we also define the restriction operator R and show that

it satisfies similar semi-norm estimates. The semi-norm estimates that we prove will later

be used to show that the composition Q = S∞ ◦A ◦ R satisfies the semi-norm estimates in

(5.3).

On the regular grid K6, in equilateral affine coordinates, Loop’s subdivision functions

are quartic box splines. Given u ∈ CN(K6), the subdivision limit function is given by the

formula

S∞u(x) =
∑

v∈K6
uvM222(x− v + 2ξ3) ,
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(a)

-

PSfrag replacements
√
3
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3
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(b)
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0
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0

(c)

Figure 5.1: Quartic box spline basis function. (a) TheM222 basis function. (b) The support
of M222. (c) The support of T222.

where the sum is over v ∈ Vertex(K6). Recall the mask width of Loop’s subdivision scheme

is 2, so by Proposition 8, if L ⊂ K is a subcomplex of a simplicial surface K without

boundary, and N1(L) ↪→ K6 is an embedding into the equilateral grid, then the embedding

defines an affine coordinate system (|N1(L)|◦, x). With respect to these coordinates we have

S∞u(x) =
∑

v∈N1(L)
uvM222(x− v + 2ξ3) for x ∈ |L| .

We now define norms and semi-norms for the control net spaces CN(L), where L ⊂ K6

is a simplicial sub-surface of K6 with the equilateral realization. The L2
CN

(L)-norm of

u ∈ CN(L) is defined by

‖u‖2L2
CN
(L) =

∑

v∈L
u2v .

Then theHm
CN

(L)-semi-norms and norms are defined using the backward difference operators

∇α for α ∈ Z3+ by

|u|2Hm
CN
(L) =

∑

|α|=m
‖∇αu‖2L2

CN

and ‖u‖2Hm
CN
(L) =

m∑

s=0

|u|2Hs
CN
(L),

where each L2
CN

-norm ‖∇αu‖L2
CN

is computed over the set of vertices where the differenced

control net ∇αu is defined.

Let

Zm(L) = {u ∈ CN(L) : |u|Hm
CN
(L) = 0} (5.15)
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be the Hm
CN

-null space. Given a function f ∈ C(|L|), let f|L ∈ CN(L) be the control net

obtained by restricting the function to the vertices of the control net.

Proposition 60. Let L ⊂ K6 be a non-empty, connected simplicial sub-surface. Then for

any m = 0, 1 or 2 we have

Zm(L) = {p|L : p ∈ Pm−1} ,

where we interpret P−1 to be {0}.

Proof. It is clear that {p|L : p ∈ Pm−1} ⊂ Zm(L) for m = 0, 1 or 2, since a second-order

difference of a linear function is 0. Conversely, we show that Zm(L) ⊂ {p|L : p ∈ Pm−1}.
This is clear for m = 0 or 1, so we need only consider m = 2. Let u ∈ Z2(L). For any face

T ∈ L, there is a unique p ∈ P1 that interpolates u on the vertices of T , i.e., uv = p(v) for

all v ∈ Vertex(T ). The control net p|L ∈ CN(L) is an extension ũ of u|T ∈ CN(T ) such that

ũ ∈ Z2(L). We show that, given u|T ∈ CN(T ), there is a unique extension ũ ∈ Z2(L), and
therefore u = p|L, completing the proof.

To show that the extension ũ ∈ Z2(L) is unique, we prove the following claim:

Suppose K ⊂ K6 is a non-empty, connected simplicial surface, and T is a face

of K6 such that K ∪T ⊂ K6 is also a connected simplicial surface. Then for any

u ∈ Z2(K), there is a unique extension ũ ∈ Z2(K ∪ T ).

The proposition follows from the claim, since starting with only T we can add one face at

a time until we get L = T + T1 + · · ·+ Tn. As each face is added we extend ũ in a unique

way.

To prove the claim, notice there is at most one vertex w in K ∪ T which is not in K. If

there is no such vertex, then u is already a control net on K ∪T . If there is such a vertex w,

let T ′ be a face in K such that T ∩T ′ is an edge of K. There is a vertex v0 ∈ Vertex(T ∪T ′)
and a multi-index α ∈ Z3+ with |α| = 2 and with indices i1 and i2 such that αi1 = αi2 = 1,

and such that

{
v0, v0 − ξi1 , v0 − ξi2 , v0 − ξi1 − ξi2

}
= Vertex(T ∪ T ′) .
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Now, any ũ ∈ Z2(K ∪ T ) must satisfy

(∇αũ)v0 = 0.

This is a linear equation with one unknown value ũw, so there is a unique solution.

We redefine the Hm
A -Sobolev norms on |L| so that they have a parallel construction with

the control net norms. They are redefined as

|f |2Hm
A (L)

=
∑

|α|=m
‖Dαf‖2L2A(L) and ‖f‖2Hm

A (L)
=

m∑

s=0

|f |2Hs
A(L)

.

These norms are equivalent to the standard Sobolev norms on |L| given by

|||f |||2Hm(L) =
∑

|γ|≤m

∫

|L|
(Dγf(x))2 dx ,

where γ ∈ Z2+ andDγ = ( ∂
∂x1

)γ1( ∂
∂x2

)γ2 . Note that we use the upper indices to denote partial

derivatives and lower indices to denote directional derivatives in the grid directions. To prove

that the norms are equivalent, we consider the linear map x = Bz =
(

1/2 1/2

−
√
3/2

√
3/2

)(
z1
z2

)
.

Then by Proposition 40 we have an equivalence of norms

c|||f |||Hm(L) ≤ |||f ◦B|||Hm(B−1L) ≤ C|||f |||Hm(L) . (5.16)

The linear map B transforms the standard grid into the equilateral grid, and therefore for

a multi-index α ∈ Z3+

(Dαf)(Bz) = D(α1+α3,α2)(f ◦B)(z) +D(α1,α2+α3)(f ◦B)(z) .

So we have

‖f‖2Hm
A (L)

=
∑

|α|≤m

∫

|L|
(Dαf(x))

2dx =
∑

|α|≤m

∫

B−1|L|
(Dαf(Bz))

2|detB| dz

=
∑

|α|≤m

∫

B−1|L|

(
Dα1+α3,α2(f ◦B)(z) +Dα1,α2+α3(f ◦B)(z)

)2
|detB| dz .

Therefore, there are constants such that

c|||f ◦B|||2Hm(B−1L) ≤ ‖f‖2Hm
A (L)

≤ C|||f ◦B|||2Hm(B−1L) . (5.17)

Combining (5.16) and (5.17) proves that these are equivalent norms.
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Proposition 61. Let T be a face in Kn with an embedding N1(T ) ↪→ K6, then for any

control net u ∈ CN(N1T ) we have

|S∞ u|Hm
A (T )

≤ |u|Hm
CN
(N1T )

for any m = 0, 1 or 2.

In computing the bounds for the subdivision and restriction operators we will use a

general form of Young’s inequality, which as Folland [10] says “should be more widely

known”.

Proposition 62 (The Generalized Young’s Inequality). Let (X,µ) and (Y, ν) be σ-

finite measure spaces, and let 1 ≤ p ≤ ∞ and C > 0. Suppose K is a measurable function

on X × Y such that

sup
x∈X

∫

Y
|K(x, y)| dν(y) ≤ C and sup

y∈Y

∫

X
|K(x, y)| dµ(x) ≤ C. (5.18)

Given f ∈ Lp(Y ), the function

Tf(x) =

∫

Y
K(x, y)f(y)dµ(y) (5.19)

is well defined almost everywhere, and Tf is in Lp(X) with ‖Tf‖Lp(X) ≤ C‖f‖Lp(Y ).

The proof can be found in Folland [10]. It relies on some clever applications of Hölder’s

inequality.

Proof of Proposition 61. For any u ∈ CN(N1T ) and any multi-index |α| = m we have,

by (5.10),

Dα(S
∞u)(x) =

∑

v

(∇αu)vM222−α(x− v + 2ξ3) for x ∈ |T |, (5.20)

where the sum is taken over the index set J on which ∇αu is defined. The operator

∇αu 7→ DαS∞ u in (5.20) may be viewed as an “integral” operator of the form (5.19) in the

Generalized Young’s Inequality. Specifically, take X = |T | with Lebesgue measure, Y = J

with counting measure, and the kernel K to be

K(x, v) =M222−α(x− v + 2ξ3).
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We take C = 1 for the constant in Young’s Inequality, since by Proposition 59 we have

∑

j∈J
M222−α(x− j) = 1 for x ∈ |T | and

∫

T
M222−α(x− j) dx ≤ 1 for j ∈ J .

Therefore by Young’s inequality we get

‖Dα(S
∞u)‖L2(T ) ≤ ‖∇αu‖L2

CN
(J).

Summing over all multi-indices |α| = m yields

|S∞u|2Hm
A (T )

=
∑

|α|=m
‖Dα(S

∞u)‖2L2(T ) ≤
∑

|α|=m
‖∇αu‖2L2

CN

= |u|2Hm
CN
(N1T )

.

To define rotation equivariant operators, we first define the operator on a wedge W of

Kn, then extend in a rotation equivariant way to all of Kn. Let (|N3(W \N3(v0))|◦, x) be
an affine equilateral coordinate system as shown in Figure 5.2.

PSfrag replacements
v0

W \N3(v0)

Figure 5.2: The equilateral affine coordinate system of (|N3(W \N3(v0))|◦, x) .

We define the restriction operator R : L1Λ,loc(Kn)→ CN(Kn) by integrating the function

over balls. We fix a constant 0 < ρ <
√
3/2 which will define the radius of these balls. For

each v ∈ Vertex(W ) \ v0 and f ∈ L1Λ,loc(Kn) we define

(Rf)v =
1

πρ2

∫

Bρ

f(v + x) dx , (5.21)
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where Bρ = {x ∈ R2 : |x| < ρ}. We extend restriction to a vertex v ∈ Kn \ v0 using a

rotation σ of Kn such that σ−1v ∈ W , then define (Rf)v = (R(f ◦ σ))σ−1v so that R is

rotation equivariant.

For the central vertex v0 ∈ Kn, let y : |Kn| → R2 be an equivariant characteristic

coordinate chart such that |y(v)| = 1 for v ∈ N1(v0) \ v0. We define restriction at the

central vertex by

(Rf)v0 =
1

πρ2

∫

Bρ

f(v0 + y) dy , (5.22)

where Bρ = {y ∈ R2 : |y| < ρ}. The bound on ρ gives the following locality property of R

if f ≡ 0 on |N1(v)| then (Rf)v = 0 . (5.23)

Proposition 63. For any L ⊂ Kn such that there is an embedding N1(L) ↪→ K6, we have

the semi-norm estimate

|Rf |Hm
CN
(L) ≤ C|f |Hm

A (N1L)
for m = 0, 1 or 2,

computed in the affine coordinates on N1(L).

To prove the lemma, we introduce a more general restriction operator for a subcomplex

L ⊂ K6. The restriction operator RA : L1loc(L − Ω) → CN(L) is defined in terms of a

function A ∈ L∞(R2) that is supported on a bounded set Ω. The set difference notation

means A±B = {x± y : x ∈ A and y ∈ B}. The general restriction operator is defined by

(RAf)v =

∫
A(v − x)f(x)dx for f ∈ L1loc(L− Ω). (5.24)

Lemma 64. Suppose A ∈ L∞(R2) is supported in a bounded set Ω. For any subcomplex

L ⊂ K6, the restriction operator is bounded in the L
2-norm as follows

‖RAf‖L2
CN
(L) ≤ |RA| ‖f‖L2(L−Ω) , (5.25)

where

|RA| = max

{
‖A‖L1 ,

∥∥∥
∑

v∈K6
|A(· − v)|

∥∥∥
L∞

}
(5.26)

is a constant independent of L.
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Proof. The operator RA is an integral operator of the form (5.19) in the Generalized Young’s

Inequality. Specifically, let X = Vertex(L) with counting measure, Y = |L| − Ω with

Lebesgue measure, and K(v, y) = A(v − y) be the kernel. Both the bounds in (5.18) are

satisfied by (5.26), proving the Lemma.

We introduce an integral operator, which we use in the proof of Proposition 63,

IiA(x) =

∫ 0

−1
A(x− tξi) dt for i = 1, 2 or 3 (5.27)

and the iterated version Iα = Iα11 Iα22 Iα33 for a multi-index α ∈ Z3+.

Lemma 65. Suppose A ∈ L∞(R2) is supported in a bounded domain Ω. Then we have the

following:

(i) For any subcomplex L ⊂ K6, multi-index α ∈ Z3+, and function f ∈ L1loc(L − Ω), we

have

∇αRAf = RIαADαf

wherever the differenced control net is defined.

(ii) The constant in (5.26) satisfies the inequality

|RIαA| ≤ |RA| .

Proof. (i) For any function A as in the hypothesis and i = 1, 2 or 3 we have

(∇iR
Af)w = (RAf)w − (RAf)w−ξi

=

∫
A(w − x)

(
f(x)− f(x− ξi)

)
dx

=

∫
A(w − x)

∫ 0

−1
Dif(x+ tξi) dt dx

=

∫
Dif(x)

∫ 0

−1
A(w − x− tξi) dt dx

=

∫
Dif(x)IiA(w − x) dx

= (RIiADif)w .
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(ii) Computing for i = 1, 2 or 3 we get the inequalities

‖IiA‖L1 =
∫
|IiA(x)| dx ≤

∫ 0

−1

∫
|A(x− tξi)| dx dt = ‖A‖L1

and

∑

v∈K6
IiA(x− v) =

∫ 0

−1

∑

v∈K6
A(x− v − tξi) dt ≤

∥∥∥
∑

v∈K6
A(· − v)

∥∥∥
L∞

.

Therefore |RIiA| = max{‖IiA‖L1 , ‖
∑

v∈K6 IiA(x− v)‖L∞} ≤ |RA|.

Proof of Proposition 63. The embedding N1L ↪→ K6 defines an equilateral affine coor-

dinate system (|N1L|◦, x). In this coordinate system we have

Rf = RAf on L, where A =
1

πρ2
χ(Bρ) ;

i.e., A is a multiple of the characteristic function of the ball of radius ρ centered at the

origin. Let α ∈ Z3+ be a multi-index with |α| = m, and let Jα be the index set on which

∇αu is defined for u ∈ CN(L). By Lemmas 64 and 65 we have

‖∇αRAf‖L2
CN
(Jα) = ‖RIαADαf‖L2

CN
(Jα) by Lemma 65 part (i)

≤ |RIαA| ‖Dαf‖L2(L−Bρ) by Lemma 64

≤ |RA| ‖Dαf‖L2(N1L) by Lemma 65 part (ii).

Summing over α we get

|Rf |2Hm
CN
(L) = |RAf |2Hm

CN
(L) =

∑

|α|=m
‖∇αRAf‖2L2

CN

≤ C
∑

|α|=m
‖Dαf‖2L2(N1L) = C |f |2Hm(N1L)

.

5.3 A Quasi-Interpolant on Kn

We construct the averaging operator A : CN(Kn)→ CN(Kn) in this section, completing the

definition of the quasi-interpolant Q = S∞ ◦A◦R on Kn for Loop’s subdivision scheme. We

then prove Theorem 57, showing that the quasi-interpolant Q has the desired properties.
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This theorem depends on the solutions to a family of linear systems. The existence of these

solutions is the subject of the remaining sections of the chapter.

The quasi-interpolant Q must reproduce both components of the characteristic map and

a constant function. Let τ : |Kn| → R2 be an equivariant characteristic map, generated by

a control net τ ∈ CN(Kn) of the same name. The quasi-interpolant Q will reproduce these

functions if for all vertices v ∈ Kn

(A R τ)v = τv (5.28)

and

(A 1)v = 1. (5.29)

Indeed if these equations are satisfied for every v ∈ Kn, then

Qτ = S∞A R(τ) =
∑

(A R τ)v φv =
∑

τvφv = τ,

and similarly Q1 = 1. Notice, if (5.28) is satisfied for a single characteristic map τ then the

same equation is satisfied for any characteristic map, since any characteristic map can be

represented as a composition of τ with a linear transformation.

In some neighborhood of the origin we need only reproduce the linear polynomials in

characteristic coordinates. We denote the restriction of A to a subcomplexK ⊂ Kn by A|K :

CN(Kn) → CN(K). We say the operator A|K has support width d′ if for any subcomplex

L ⊂ K ⊂ Kn we have the implication

if u ≡ 0 on Nd′(L,Kn) then A|Ku ≡ 0 on Vertex(L). (5.30)

Lemma 66. For any valence n and integer d′ ≥ 2, we can define A|Nd′ (v0)
so that it has

support width d′ and satisfies (5.28) and (5.29) for every vertex v ∈ Nd′(v0).

Proof. For each v ∈ Nd′(v0), let v1(v) and v2(v) be vertices in N1(v0,Kn) \ v0 closest to v.

Suppose A|Nd′ (v0)
is of the form

(Au)v = w0vuv0 + w1vuv1(v) + w2vuv2(v), (5.31)
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with undetermined coefficients w0v, w
1
v and w2v. Since {v0, v1, v2} ⊂ Nd′(v), the operator

A|Nd′ (v0)
has support width d′. We write (5.28) and (5.29) as a linear system




1 1 1

0

0
(Rτ)v1 (Rτ)v2







w0v

w1v

w2v


 =




1

τv


 . (5.32)

We show that (5.32) has a solution. Note (Rτ)v1 is non-zero. Let σ be the rotation of Kn

such that σv1 = v2. Since τ is equivariant, there is a 2 × 2 rotation matrix σ̃ such that

τ ◦ σ = σ̃ · τ . Then by the equivariance of R and τ we have

(Rτ)v2 = (Rτ)σv1 =
(
R(τ ◦ σ)

)
v1

= R(σ̃ · τ)v1 = σ̃ · (Rτ)v1 .

Therefore, since σ̃ is a rotation other than the identity, the lower right 2x2 submatrix in

(5.32) is non-degenerate, and so the system has a unique solution.

-
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Figure 5.3: The stencil of offsets for the 2 neighborhood.

Away from the central vertex we must reproduce affine quadratic polynomials as well

as characteristic linear polynomials. We work in the affine coordinate system (|N3(W \
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N3(v0))|◦, x) shown in Figure 5.2. If we define A on W \Nd′(v0), then we can extend A to

Kn \Nd′(v0), so that it is rotation equivariant. Specifically, for any v ∈ Kn \Nd′(v0), let σ

be a rotation of Kn such that σ−1v ∈W , and define

(Au)v = (A(u ◦ σ))σ−1v . (5.33)

For a fixed vertex v ∈ W \ N3(v0) with coordinate representation x(v) = (v1, v2), we

consider the following basis for P2:

f0(x) = 1 f3(x) = (x1 − v1)(x2 − v2)

f1(x) = x1 − v1 f4(x) = (x1 − v1)2 − (x2 − v2)2 (5.34)

f2(x) = x2 − v2 f5(x) = (x1 − v1)2 + (x2 − v2)2 − 1
2ρ
2

We construct convolution operators Lj : CN(N2(W \ N3(v0))) → CN(W \ N3(v0)), which
have a certain duality property with the basis {fk}. Let {δi}18i=0 be the sequence of x-

coordinate offset vectors, shown in Figure 5.3. The convolution operator Lj for j = 0, . . . , 7

is defined by the formula

(Lju)w =
18∑

i=0

mi
j uw+δi for w ∈W \N3(v0), (5.35)

where the masks mj = {mi
j}18i=0 are shown in Figure 5.4.

Proposition 67. For any vertex v ∈W \N3(v0), let {fk} be the basis of P2 given by (5.34).

Then (Lj R fk)v = δjk for any 0 ≤ j ≤ 7 and 0 ≤ k ≤ 5.

Proof. Since the operators Lj are translation equivariant and the basis functions are also

translation equivariant, it suffices to prove the proposition for a single vertex v. Thus the

proof reduces to 48 cases that need to be checked. Let f̃k(x) = fk(x) for k = 0, . . . , 4, and let

f̃5(x) = (x1 − v1)2 + (x2 − v2)2. We first claim that (Rfk)w = f̃k(w) for any w ∈ N2(v) and
k = 0, . . . , 5. This follows from the mean value property, except for case k = 5, which must

be computed explicitly. Most of the 48 cases can be checked easily by finding a suitable

reflection symmetry of the mask and the control net f̃k|N2(v), such as a reflection about an

axis. For instance, the mask m1 has an odd symmetry with respect to reflection across

the line x1 = v1, and f̃0, f̃2, f̃4 and f̃5 are even with respect to this reflection, therefore

L1f0 = L1f2 = L1f4 = L1f5 = 0. Other cases must be checked individually.
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We define AW\Nd′ (v0)
by

(Au)v =

7∑

j=0

wjv(Lju)v for v ∈W \Nd′(v0). (5.36)

The parameters d′ and wjv are, for now, undetermined.

We use the quasi-interpolant theory on the regular grid K6 to help determine the coeffi-

cients wjv. From Chapter III of deBoor, et. al. [6], we know that Q̂ : C(R2)→ S(K6) given

by

Q̂f(x) =
∑

v∈K6
(ηf)vM222(x− v + 2ξ3),

with

(ηf)v =
3

2
f(v)− 1

12

∑

w∈N1(v)\v
f(w) (5.37)

is a quasi-interpolant which reproduces all polynomials of degree at most 3. Since our quasi-

interpolant Q is supposed to locally reproduce P2, we expect A ◦R to behave exactly like η

on P2. That is, for each v ∈W \Nd′(v0) we require that

(A R fk)v = (ηfk)v for k = 0, . . . , 5. (5.38)

Notice that if (5.38) is satisfied at a vertex v, then by linearity (A R f)v = (η f)v for any

f ∈ P2. By the definition of A (5.36) and Proposition 67 we get

(A R fk)v =
7∑

j=0

wjv(Lj R fk)v = wkv . (5.39)

A simple computation shows

(ηfk)v =
3

2
fk(0)−

1

12

6∑

i=1

fk(δi) =





1 k = 0,

0 k = 1, 2, 3, 4

−12(1 + ρ2) k = 5.

(5.40)

So from (5.38), (5.39) and (5.40) we conclude w0v = 1, w1v = · · · = w4v = 0, and w5v =

−12(1 + ρ2).
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Substituting (5.36) and the known values of w0v, . . . , w
5
v into the left side of (5.28) yields

a 2× 2 system that w6v and w7v must satisfy

(
L6Rτ L7Rτ

)
v


 w6

w7



v

=
(
τ − L0Rτ + 1

2(1 + ρ2)L5Rτ
)
v

(5.41)

at each v ∈W \N3(v0). We call (5.41) the polynomial reproducing system.

Lemma 68. Suppose for some valence n and integer d′ ≥ 3 we define A|W\Nd′ (v0)
by (5.36),

where the coefficients wjv satisfy

w0v = 1, w1v = · · · = w4v = 0, w5v = −12(1 + ρ2), (5.42)

and equation (5.41). We extend A to Kn \Nd′(v0) using (5.33) so that it is rotation equiv-

ariant, and extend it to all of Kn by defining A|Nd′−1(v0)
as in Lemma 66. Then Q = S∞A R

is order 3 with support width d = d′ + 1.

Proof. Since A|Kn\Nd′ (v0)
has support width 2 and A|Nd(v0) has support width d′ − 1 ≥ 2,

the support width of A is d′ − 1. Then the support width of Q is d = d′ + 1 since the mask

width of Loop’s subdivision scheme is 2 and (5.23) gives the support width of R. To show

that Q is order 3 we first show that Q reproduces characteristic functions. We do this by

showing that (5.28) is satisfied for every vertex v ∈ Kn. Equation (5.28) is satisfied for

v ∈ Nd′−1(v0) by Lemma 66 and for v ∈ W \ Nd′(v0) by the derivation of (5.41). For a

vertex v ∈ Kn \Nd′(v0), let σ be a rotation of Kn such that σ−1v ∈ W \Nd′(v0). Then by

equivariance

(A R τ)v = (A R (τ ◦ σ))σ−1v ,

and since τ ◦ σ is also a characteristic map, by (5.28) we have

(A R τ)v = (τ ◦ σ)σ−1v = τv .

Similarly Q reproduces constant functions on all of Kn.

Secondly, we need to show that for any K ⊂ Kn with an affine coordinate system

(|NdK|, x̃), and f(x̃) a polynomial of degree at most 2, we have Qf = f on |K|. By the

quasi-interpolant Q̂ on the regular grid we have

f(x̃) =
∑

v∈N1K
(ηf)vM222(x̃− v + 2ξ3) for x̃ ∈ |K| .
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Now, v ∈ N1K implies v ∈ Kn \ Nd′(v0). Let σ be a rotation of Kn such that σ−1v ∈
W \Nd′(v0). The coordinate representation of σ, namely x̃ = σ(x), is an affine linear map,

so f ◦ σ is polynomial of degree at most 2 in x-coordinates on N3(σ
−1v), and by rotation

equivariance

(ηf)v =
(
η(f ◦ σ)

)
σ−1v

=
(
A R (f ◦ σ)

)
σ−1v

= (A Rf)v .

Therefore,

f(x̃) =
∑

(A R f)vφv(x̃) = (S∞A R f)(x̃) = Qf(x̃) for x̃ ∈ |K| .

The following lemma, which we prove in the remaining sections of the chapter, states that

the required solutions to (5.41) exist. Assuming this lemma holds we can prove Theorem 57.

Lemma 69. For each valence n there exists an integer d′n ≥ 3 and a constant C, such

that for each v ∈ W \Nd′n(v0), equation (5.41) has a solution wjv, for j = 6 or 7 satisfying

|wjv| < C.

Proof of Theorem 57. By Lemmas 68 and 69 there is a map Q : L1Λ,loc(Kn) → S(Kn)

and a constant dn = d′n + 1 for each valence n, such that Q is local with support width dn

and of order 3. We need only show for each n that Q satisfies the alternative boundedness

criteria, i.e., there exists a constant ‖Qn‖ such that

|Qf |Hm
A (T )

≤ ‖Qn‖|f |Hm
A (N

c
dn
T )

for m = 0, 1 or 2 and any face T ∈ W \Wcen(dn). Then, by Lemma 55, Qk = c−k∗Qck∗

defines a quasi-interpolant on Kn.

For any face T ∈W \Wcen(dn), the quasi-interpolant on T is decomposed as follows

Q|T : Hm
A (N4T )

R−→ CN(N3T )
A|N1T−→ CN(N1T )

S∞−→ Hm
A (T ) . (5.43)

By Propositions 61 and 63 we have semi-norm estimates for S∞ and R, specifically

|S∞u|Hm
A (T )

≤ |u|Hm
CN
(N1T ) (5.44)
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and

|Rf |Hm
CN
(N3T ) ≤ |R| |f |Hm

A (N4T )
(5.45)

for m = 0, 1 or 2. Notice |f |Hm
A (N4T )

≤ |f |Hm
A (N

c
dn
T ) since dn = d′n+1 ≥ 4 and NdT ⊂ N c

dT .

So we only need to prove a semi-norm estimate for the averaging operator

|Au|Hm
CN
(N1T ) ≤ |A||u|Hm

CN
(N3T ) for m = 0, 1 or 2. (5.46)

To analyze the averaging operators A|N1T , first notice that any two neighborhoods

CN(N3T ) and CN(N3T̃ ) are isometric. To be precise, let T̃ be a face of W \ Wcen(dn).

Then for any other face T ∈W \Wcen(dn), there is a simplicial map ι : N3T̃ → N3T so that

ι∗ preserves the Hm
CN

-semi-norms. Using this identification, we consider A|N1T : CN(N3T̃ )→
CN(N1T̃ ), for every face T ∈W \Wcen(dn).

For each m = 0, 1 or 2 we decompose CN(N3T̃ ) into Y
m ⊕ Zm, where Zm = Zm(N3T̃ )

is the null space of the Hm
CN

(N3T̃ )-semi-norm, as defined in (5.15).

Lemma 69 implies a uniform bound on the operators A|N1T . The map A|N1T can be

represented as a matrix. Lemma 69 implies that the entries of these matrices are bounded,

and hence the operators are uniformly bounded in any norm. The Hm
CN

(N3T̃ )-semi-norm is

a norm on the subspace Y m. So there is a constant |A| such that for any T ∈W \Wcen(dn)

we have

|Au|Hm
CN
(N1T ) ≤ |A| |u|Hm

CN
(N3T ) for u ∈ Y m. (5.47)

Now we consider A|N1T applied to z ∈ Zm. By Proposition 60, z = p|N3T̃ for some

polynomial p ∈ Pm−1. Notice that Rp = p|N3T̃ and ηp = p|N3T̃ . So by (5.38) we see that

A|N1T p|N3T = p|N1T

for any T ∈W \Wcen(dn) and p ∈ P1. Then by the definition of Zm(N1T̃ ) we have

|A|N1T z|Hm
CN
(N1T ) = 0 (5.48)

for any face T , control net z ∈ Zm, and integer m = 0, 1 or 2.

Decomposing u ∈ CN(N3T ) into u = y+z, with y ∈ Y m and z ∈ Zm, we get the desired
semi-norm estimate (5.46) by (5.47) and (5.48), completing the proof.
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5.4 Solving the Polynomial Reproducing System

The goal for the remainder of the chapter is to prove Lemma 69, showing that the polynomial

reproducing system (5.41) has solutions for all v ∈W sufficiently far from the central vertex,

and moreover, that the solutions are uniformly bounded. We apply the contraction identity

for the characteristic map τ to rewrite (5.41) as an equation in terms of τ in a bounded

neighborhood independent of v ∈W .

We define scale dependent convolution operators Lhj : L2(R2) → L2(R2) based on the

discrete convolutions L0, . . . , L7 and restriction R. For any h > 0, let

Lhj f(y) = h−sj
18∑

i=0

mi
j

1

π(hρ)2

∫

B(hρ)
f(y + hδi + x) dx . (5.49)

Notice L1j = Lj ◦ R. The constants sj are defined by

j 0 1 2 3 4 5 6 7

sj 0 1 1 2 2 2 3 4
.

We will see in Section 5.5 that the constant sj is chosen, as in a finite difference scheme, so

that Lhj approximates a differential operator as h→ 0.

Recall that we have a coordinate system (|N3(W \ N3(v0))|◦, x) shown in Figure 5.2,

and in these coordinates c(x) = x/2, therefore the contraction identity (2.15) for τ is

τ(x/2) = λτ(x). For any v ∈ W k, let h = 2−k, then we have v/h = c−k(v) ∈ Vertex(W ).

Applying a change of variables and using the contraction identity for τ , we derive a scaling

relation for Lhj τ

Lhj τ(v) = h−sj
18∑

i=0

mi
j

1

πρ2

∫

B(ρ)
τ
(
h(
v

h
+ δi + x)

)
dx

= λkh−sj
18∑

i=0

mi
j

1

πρ2

∫

B(ρ)
τ(
v

h
+ δi + x)dx = λkh−sj (L1jτ)v/h . (5.50)

There is also a contraction identity for the control net τ k ∈ CN(Kk
n) which generates

the characteristic map. Since (Sτ)cv = λτv, we have τkv = (Skτ)v = λkτc−kv = λkτv/h.

Substituting this identity and (5.50) into (5.41), and dividing by λ−kh3, we get

(
Lh6τ(v) hLh7τ(v)

)

 w6(v, h)

w7(v, h)


 =

1

h3

(
τkv − Lh0τ(v)

)
+

1 + ρ2

2h
Lh5τ(v) , (5.51)
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where we have written wj(v, h) for wjv/h.

Next, we simplify the right side of (5.51) by expressing the control net in terms of the

spline function it generates.

Proposition 70. Suppose f(x) =
∑

v∈hK6 fvM222(
x−v
h + 2ξ3) is a quartic box spline on a

scaled equilateral 3-direction grid. Then for any v ∈ Vertex(hK6)

fv = f(v)− 1
8h
2∆f(v). (5.52)

Proof. We can express the Laplacian in terms of derivatives along the grid directions by

∆ = 2
3(D

2
1 + D22 + D23). Then from the differentiation formula for a box spline (5.10) we

have

D2i

( ∑

v∈hK6
fvM222(

x−v
h + 2ξ3)

)
= 1

h2

∑

v∈hK6

(
∇2i f

)
v
M222−2ei(

x−v
h + 2ξ3) .

The box spline M222−2ei is continuous and is supported on the convex hull of the remaining

directions. For example, the support of M022 is the convex hull of {0, 2ξ2, 2ξ3, 2(ξ2 + ξ3)}.
From this we see that M222−2ei(v) = 0 for all v ∈ K6, except v = ξ1 + ξ2 + ξ3 − ξi. Since
∑

v∈K6M222−2ei ≡ 1 by Proposition 59 part (iii) we conclude thatM222−2ei(ξ1+ξ2+ξ3−ξi) =
1. Thus for any v ∈ hK6,

D2i

( ∑

j∈hK6
fjM222(

x−j
h + 2ξ3)

)

|x=v
= 1

h2

(
∇2i f

)
v+hξi

= 1
h2
(fv+hξi − 2fv + fv−hξi) ,

and hence

∆f(v) =
2

3
(D21 +D22 +D23)|vf

=
1

h2

(
− 4fv +

2

3

∑

N1(v,hK6)\v
fu

)
. (5.53)

By an explicit computation we get M222(1, 0) = 1
12 and M222(2, 0) = 1

2 , and therefore

we have

f(v) =
1

2
fv +

1

12

∑

N1(v,hK6)\v
fu . (5.54)

Combining (5.53) and (5.54) we derive (5.52).
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Using this proposition to rewrite the right side of (5.51) we get

(
Lh6τ(v) hLh7τ(v)

)

 w6(v, h)

w7(v, h)


 = Rhτ(v) , (5.55)

where

Rh =
1

h3
I − 1

8h
∆− 1

h3
Lh0 +

1 + ρ2

2h
Lh5 . (5.56)

Using (5.55) we can rewrite the polynomial reproducing system at a vertex inW in terms

of scaled operators acting near a fundamental region. Define the subcomplex W1 ⊂ W

by W1 = N2(v0,W ) \ N1(v0,W ). The region |W1| is a fundamental domain of |Kn| \ v0
with respect to the group generated by a rotation of |Kn| and the contraction c. Let

E = Edge(W1) \ {ξ2, ξ3} be the edges of W1 except the edge nearest the central vertex, and

let A = 2ξ3 and B = ξ2 + ξ3 be vertices of W1, as shown in Figure 5.5.

PSfrag replacements

v0

W1

A

B

Figure 5.5: The fundamental region |W1|. The edges E ⊂ Edge(W1) are highlighted.

We represent a vertex in N3(W \N3(v0,Kn))
k for some k ≥ 0 by a pair (v, h), where v

is the x-coordinate of the vertex and h = 2−k is the scale. We consider the following three

disjoint collections of vertex and scale pairs:

(i) Let VI be the collection of pairs (v, h) such that for some face F ∈ W1, we have

|N2(v,Kk
n)| ⊂ |F |.

(ii) Let VII be the collection of pairs (v, h) /∈ VI such that |N3(v,Kk
n)| ⊂ |F−| ∪ |F+|,

where F± ∈ Face(Kn) and F− ∩ F+ ∈ E.
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(iii) Let VIII be the collection of pairs (v, h) /∈ VI∪VII such that |N3(v,Kk
n)| ⊂ |N1(u0,Kn)|,

where u0 = A or B.

Figure 5.6 shows an assignment of all but finitely many of the vertices of W to one of

three classes. A vertex v ∈ W is considered to be in class I, for instance, if by applying

repeated contraction ck and possibly a rotation σ, we get (σck(v), 2−k) ∈ VI . Notice not

every vertex inW falls into one of the three classes above, but every vertex v ∈ Kn\N10(v0)
does. We consider each of these classes in the next three sections. In each case we show

that the solutions to (5.41) exist and are bounded. Therefore we have solutions to (5.41)

for all v ∈W sufficiently far from v0.

PSfrag replacements

Class I

Class II

Class III

v0

Figure 5.6: Three classes of vertices in W . The shaded region is W1. The lines are the
images of Edge(W1) under the maps c−k.

5.5 Class I: Away From Edges

Suppose (v, h) ∈ VI and k = − log2 h. We show that w6(v, h) = w7(v, h) = 0 is a trivial

solution to (5.55). We see that Lh0τ(v) and L
h
5τ(v) depend on τ on |N2(v,Kk

n)|. This domain

is contained in a single face of Kn and so τ is a polynomial on this domain.

We first develop the relationship between the convolution operators Lhj and certain

differential operators. The differential operators we consider are the Laplacian ∆ = ∂2

∂x21
+
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∂2

∂x22
, the bi-Laplacian ∆2, and D111 =

1
4
∂3

∂x31
− 3
4

∂3

∂x1∂x22
, which is differentiation in the three

grid directions of the equilateral grid.

The box spline functions spanned by translates ofM222 are piecewise quartic polynomials

as we see from Proposition 59 part (iv). However, not all quartic polynomials are M222 box

spline functions. By differentiating the two polynomial pieces of T222, given by (5.13) and

(5.14), we see that ∆2T± = 0. So, by (5.11) it follows that ∆2M222 = 0 on each face of K6.

We denote the space of bi-harmonic, degree-4 polynomials by

P∆4 = {p ∈ P4 : ∆2p = 0}.

The following proposition shows that the right side of (5.55) is zero for (v, h) ∈ VI , and
so w6(v, h) = w7(v, h) = 0 is a solution to (5.55).

Proposition 71. For any polynomial p ∈ P∆4 we have the following identities:

Lh0p = p+ 1
8(hρ)

2∆p Lh6p = D111p

Lh5p =
1
4∆p Lh7p = 0

Rhp = 0

Proof. We expand p as a finite Taylor series about v, i.e., p(v+x) =
∑ 1

α!(D
αp)|vx

α, where

Dαp = 0 for |α| > 4. Scaled moments of the ball B(hρ), defined as 1
π(hρ)2

∫
B(hρ) x

α dx for a

multi-index α ∈ Z2+, are listed below for |α| ≤ 4:

α2

α1 0 1 2 3 4

0 1 0 h2ρ2

4 0 h4ρ4

8

1 0 0 0

2 h4ρ4

24

The moments are symmetric in the indices. So we only show the cases where α2 ≥ α1.

Using these moments we compute

Lh0p(v) =
1

π(hρ)2

∑

α

1

α!
(Dαp)|v

∫

B(hρ)
xα dx

= p(v) + 1
8(hρ)

2∆p(v) + 1
192(hρ)

4∆2p(v) .
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For the other convolution operators, we first analyze the finite difference operators. We

substitute the Taylor series expansion of p(v+x) into the finite difference to get the following:

h−2
6∑

i=0

mi
5 p(v + hδi) =

1
4∆p(v) +

1
64h

2∆2p(v)

h−3
6∑

i=0

mi
6 p(v + hδi) = −D111p(v)

h−4
18∑

i=0

mi
7 p(v + hδi) = ∆2p(v)

Integrating over B(hρ) we get the following:

Lh5p(v) =
1

π(hρ)2

∫

B(hρ)
h−2

7∑

i=0

mi
5 p(v + x+ hδi)dx

=
1

π(hρ)2

∫

B(hρ)

1
4∆p(v + x) + 1

64h
2∆2p(v + x) dx

= 1
4∆p(v) +

(1+2ρ2)
64 h2∆2p(v),

Lh6p(v) =
1

π(hρ)2

∫

B(hρ)
h−3

7∑

i=0

mi
6 p(v + x+ hδi) dx

=
1

π(hρ)2

∫

B(hρ)
D111p(v + x) dx

= D111p(v),

and

Lh7p(v) =
1

π(hρ)2

∫

B(hρ)
h−4

18∑

i=0

mi
7 p(v + x+ hδi) dx

=
1

π(hρ)2

∫

B(hρ)
∆2p(v + x) dx

= ∆2p(v) .

Combining the other parts of this proposition, we see also that Rhp = 0.

5.6 Class II: Near an edge

We show that there is a solution to (5.55) for any (v, h) ∈ VII and moreover that the

solutions are uniformly bounded. For a fixed (v, h) ∈ VII let F− and F+ ∈ Face(Kn)
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be such that |N3(v,Kk
n)| ⊂ |F−| ∪ |F+|. Let U = F+ ∪ F− be a subcomplex of Kn.

From the definition of E ⊂ Edge(W1) (Figure 5.5) one sees that there is an embedding

N1U ↪→ K6. So we can define an equilateral affine coordinate chart x on |N1U |◦ such that

x(F− ∩ F+) = {0, ξ3} ∈ Edge(K6) with x(v) = (v1, v2) and v1 ≤ 0. The mask width of

Loop’s subdivision scheme is 2 so, by Proposition 8, we can write the characteristic map on

|U | as
τ(x) =

∑

u∈N1U
τuM222(x− u+ 2ξ3) for x ∈ |U |. (5.57)

We can extend the control net τ|N1U to all of K6 by setting τu = 0 for all vertices not in

N1U . This extension does not effect the value of τ on |U |.
We use the truncated power series form of a box spline (5.12) to write τ|U = p+G with

p ∈ P∆4 and G a piecewise polynomial that is zero on |F−|. Using (5.12) and (5.57) we can

write τ as a truncated power series

τ(x) =
∑

u∈K6
(∇c

222τ)u T222(x− u) . (5.58)

Recall that ∇c
α is a centered difference operator defined in Section 5.1.

Most of the terms of (5.58) are in P∆4 on |U |. Only when u = −jξ3 with j ≥ 0 is

T222(x − u) non-polynomial on |U |. We decompose these non-polynomial terms into a

polynomial component and a non-polynomial component that is zero on F−. Define

g1(x) =
32
3
√
3
x32+ and g2(x) =

32
3
√
3
x1x

3
2+, (5.59)

where xn+ is the single variable truncated power, i.e., xn+ = xn when x ≥ 0 and xn+ = 0

otherwise. Using the explicit form of T222 in (5.13) we get

T222(x) =
(
T222(x)− T−(x)

)
+ T−(x) = g2(x) + T−(x) for x ∈ |U |.

Then the non-polynomial piece of τ on |U | is given by

G(x) =
∞∑

j=0

(∇c
222τ)−jξ3g2(x+ jξ3)

=

( ∞∑

j=0

(∇c
222τ)−jξ3

)
g2(x) +

( ∞∑

j=0

j(∇c
222τ)−jξ3

)
g1(x) .
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We conclude that we can decompose τ on |U | into

τ(x) = p(x) +G(x), where G(x) = c1g1(x) + c2g2(x) (5.60)

for some ci ∈ R2 and p ∈ P∆4 .

Proposition 72. At any point y = (y1, y2) ∈ R2 and for any h ≥ 0 we have

Lhj g2(y) = y1L
h
j g1(y) for j = 0, 5 or 7. (5.61)

Proof. Let F2(x1, x2) = (−x1, x2) be reflection about the x2 axis. We also let F2 denote the

corresponding permutation of the stencil indices, so that δF2(i) = F2(δi). The mask mj is

symmetric with respect to F2, i.e., m
i
j = m

F2(i)
j . We compute Lhj g2(y) as follows:

Lhj g2(y)

=
1

2
h−sj

18∑

i=0

mi
j

1

π(hρ)2

∫

B(hρ)
g2(y + hδi + x) + g2(y + hδF2(i) + x)dx

=
16

3
√
3
h−sj

18∑

i=0

mi
j

1

π(hρ)2

∫

B(hρ)

(
(y1 + hδi,1 + x1) + (y1 − hδi,1 + x1)

)
(y2 + hδi,2 + x2)

3
+dx

=
32

3
√
3
h−sj

18∑

i=0

mi
j

1

π(hρ)2

(∫

B(hρ)
y1(y2 + hδi,2 + x2)

3
+dx+

∫

B(hρ)
x1(y2 + hδi,2 + x2)

3
+dx

)
.

The second integral in the previous line is zero since the integrand is odd with respect to

F2. Thus the right side is equal to y1L
h
j g1(y), proving (5.61).

The operator Rh on the right side of the polynomial reproducing equation (5.55) is

linear. Applying Rh to the decomposition (5.60), we see, by Proposition 71, that Rhp = 0.

Since G = 0 on |F−| we have G(v) = ∆G(v) = 0 and therefore

Rhτ(v) = − 1

h3
Lh0G(v) +

1 + ρ2

2h
Lh5G(v) . (5.62)

Now substituting G = c1g1 + c2g2 into (5.62) and using Proposition 72 we get

Rhτ(v) = − 1

h3
Lh0(c1g1 + c2g2)(v) +

1 + ρ2

2h
Lh5(c1g1 + c2g2)(v)

=
(
− 1

h3
Lh0 g1(v) +

1 + ρ2

2h
Lh5 g1(v)

)
(c1 + v1c2) . (5.63)
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In particular the right side of (5.55) is a scalar multiple of c1 + v1c2 ∈ R2.

We now show that the second column of the matrix in (5.55) is also a scalar multiple of

c1 + v1c2. Computing we get

hLh7 τ(v) = hLh7 (p+ c1g1 + c2g2)(v) by (5.60)

= hc1(L
h
7 g1)(v) + hc2(L

h
7 g2)(v) by Prop. 71

= h(c1 + v1c2)(L
h
7 g1)(v) by Prop. 72.

We have either v2 = 0 or −
√
3
2 h, and g1(x) is a homogeneous function of degree 3 in the

variable x2, i.e., g1(hx) = h3g1(x). Therefore L
h
j g1 is homogeneous of degree (3− sj), and

so the scalar in (5.63) is a function of v2/h. Similarly hL7 g1(v) is a function of v2/h whose

values can be computed as follows:

hLh7 g1(v1, 0) =
128
9 (1− 1

2ρ
2 + 16

15
√
3π
ρ3)

hLh7 g1(v1,−
√
3
2 h) =

64
9 (1 + ρ2 − 128

45
√
3π
ρ3)

Therefore for any (v, h) ∈ VII a solution to (5.55) is given by

w6(v, h) = 0 and w7(v, h) =
1+ρ2

2h Lh5 g1(v)− 1
h3
Lh0 g1(v)

hLh7 g1(v)
, (5.64)

with |w7(v, h)| < C for some constant C.

5.7 Class III: Near a Corner

We solve the polynomial reproducing system at (v, h) ∈ VIII for sufficiently small h. The

pairs (v, h) ∈ VIII are divided into two cases VIII.A and VIII.B based on whether v is near

the point A or B ∈ Kn. Consider case VIII.A (case VIII.B is similar) let x be an equilateral

affine coordinate system centered at A. A vertex v in the pair (v, h) ∈ VIII.A is represented

in x-coordinates as v = hu where u is one of the 32 points shown in Figure 5.7. Many of

the computations in this section are done with the aid of a computer algebra program such

as Mathematica.

We write the characteristic map τ(x) in the form

τ(x) = p(x) +G3(x) +G4(x) , (5.65)
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Figure 5.7: Offsets u to a vertex.

where p ∈ P∆4 and G3(x) and G4(x) are homogeneous of degree 3 and 4 respectively. This

decomposition will allow us to isolate the effect of the scale h on the systems of equations

and will give us asymptotic descriptions of the resulting systems. When Lhj and Rh are

applied to the function Gk we get homogeneity identities

LhjGk(hu) = hk−sjL1jGk(u) and RhGk(hu) = hk−3R1Gk(u) .

From Proposition 71 we know Lh6p = D111p, which is a linear polynomial. We decompose

this linear polynomial into

Lh6 p(x) = D111p(x) = D111p(u0) + Ψ(x), (5.66)

where Ψ(x) is a homogeneous polynomial of degree 1.

Now using the decomposition (5.65) we can rewrite (5.55) at v = hu and scale h as

M(hu, h)
(
w6(hu,h)

w7(hu,h)

)
= Rhτ(hu), where

M(hu, h) =
(
D111p(u0) + L16G3 L17G3

)
|u
+ h

(
Ψ+ L16G4 L17G4

)
|u

(5.67)

and

Rhτ(hu) = R1G3(u) + hR1G4(u) . (5.68)
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5.7.1 Two Symmetric Box Spline Decompositions

We exploit the symmetry of τ in organizing the computations that follow. We decompose

the spline function τ on |N1(A,Kn)| or |N1(B,Kn)| into components that are even or odd

with respect to certain reflections.

For each case VIII.A or VIII.B we choose an equilateral affine coordinate chart x and an

equivariant characteristic chart τ . In case VIII.A the x-coordinate system is centered at A

and satisfies x(v0) = (−2, 0), and we choose τ so that τ(A) is on the x1-axis. Notice, such

a choice exists since an equivariant characteristic map composed with a rotation is still an

equivariant characteristic map. Let Fi be the reflection across the xi-axis for i = 1 or 2.

Now since τ is equivariant we have τ ◦F1 = F1 ◦ τ on N1(A), showing that the components

of τ = (τ1, τ2) are even and odd respectively with respect to the reflection F1. Similarly

for Case VIII.B we choose an equilateral affine coordinate chart centered at B such that

x(v0) = (0,
√
3), and we choose τ so that τ(B) is on the x2-axis. Then since τ ◦F2 = F2 ◦ τ

on N1(B) the components τ1 and τ2 are odd and even respectively, with respect to the

reflection F2.

In this section we decompose a quartic box spline function in the 1-neighborhood of

a vertex into terms which are symmetric with respect to one of the reflections F1 or F2.

The first proposition deals with the F1 reflection, while the second proposition describes

a decomposition with respect to F2. Let σ(x1, x2) =
(
1/2 −

√
3/2√

3/2 1/2

) (
x1
x2

)
be rotation by

π/3 radians. Define 6 wedges Wi = {(r, θ) : π
3 i ≤ θ ≤ π

3 (i + 1)} for i = 0, . . . , 5 in polar

coordinates; i.e., x1 = r cos(θ) and x2 = r sin(θ). As shorthand notation we write Wi,j for

Wi ∪Wj . Let T = T222 be the truncated power function for the quartic splines. A quartic

spline on N1(0,K6) is given by

f(x) =
∑

u∈N2(0,K6)
fuM222(x− u+ 2ξ3), for x ∈ |N1(0,K6)| . (5.69)

Proposition 73. The quartic box spline on N1(0) as given in (5.69) has a representation

f(x) = p(x) +
∑

CiEi(x) for x ∈ |N1(0,K6)|, (5.70)

where p ∈ P∆4 and the sum is taken over i = 0, 1, 2, 4, 5, 6 and 8. The functions Ei are given
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as follows:

E0(x) = g1(x) + g1(F1x) E4(x) = g2(x) + g2(F1x)

E1(x) = g1(σx)− g1(σF1x) E5(x) = g2(σx)− g2(σF1x)

E2(x) = g1(σx) + g1(σF1x) E6(x) = g2(σx) + g2(σF1x) (5.71)

E8(x) = T (x)

The function Ej is even or odd with respect to F1 when j is even or odd respectively, and

E0, E1 and E2 are homogeneous degree 3 while the other functions are homogeneous degree

4.

The coefficients Ci are computed in terms of the truncated power series coefficients au =

(∇c
222f)u for u ∈ K6 where we have extended the control net f by fu = 0 for u /∈ N2(0,K6).

The coefficients are given as follows:

C0 =
1

2

4∑

j=1

ja−ξ3j C4 =
1

2

4∑

j=1

a−ξ3j

C1 =
1

2

4∑

j=1

j (a−ξ1j − a−ξ2j) C5 =
1

2

4∑

j=1

(a−ξ1j − a−ξ2j)

C2 =
1

2

4∑

j=1

j (a−ξ1j + a−ξ2j) C6 =
1

2

4∑

j=1

(a−ξ1j + a−ξ2j) (5.72)

C8 = a0

Proof. We first comment that the functions Ej clearly satisfy the symmetry and homo-

geneity conditions. We write f as a truncated power series in terms of T using (5.12),

namely,

f(x) =
∑

u∈K6
(∇c

222f)u T (x− u) =
∑

u∈K6
auT (x− u) for x ∈ |N1(0,K6)|. (5.73)

For most u ∈ K6 the shifted truncated power T (x − u) is in P∆4 on |N1(0,K6)|. So these

terms all contribute to p(x) in the decomposition (5.70). We list the other terms in (5.73)

explicitly

f(x) = p(x)+a0T (x)+
4∑

j=1

a−ξ3jT (x+ξ3j)+
4∑

j=1

a−ξ1jT (x+ξ1j)+
4∑

j=1

a−ξ2jT (x+ξ2j) . (5.74)
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Analyzing the first sum of (5.74) we see that for x ∈ |N1(0,K6)| and j ≥ 1 we have

x+ ξ3j = (x1 + j, x2) ∈W0,5. So, from (5.13) we have

T (x) = p(x) + 16
3
√
3
x1|x32| for x ∈W0,5,

where p ∈ P∆4 . Therefore,

4∑

j=1

a−ξ3jT (x+ ξ3j) = p(x) + 16
3
√
3

4∑

j=1

a−ξ3j(x1 + j)|x2|3

= p(x) +
1

2




4∑

j=1

ja−ξ3j



(
g1(x) + g1(F1x)

)
(5.75)

+
1

2




4∑

j=1

a−ξ3j



(
g2(x) + g2(F1x)

)

= p(x) + C0E0(x) + C4E4(x).

Next we analyze the second sum in (5.74). Let x̃ = σx be a rotated coordinate system.

Expressing T in this coordinate system we get

T (x̃) =





−2 x̃41 + 4 x̃21 x̃
2
2 +

16
3
√
3
x̃1 x̃

3
2 +

2
3 x̃

4
2 for x̃ ∈W0

32
3
√
3
x̃1x̃

3
2 x̃ ∈W5

0 otherwise .

In particular we have T (x̃) = 32
3
√
3
x̃1x̃

3
2+ for x̃ ∈ W4,5. In x̃-coordinates we have x̃(−ξ1) =

(−1, 0) and if x̃ ∈ |N1(0,K6)| and j ≥ 1 then x̃ + ξ1j = (x̃1 + j, x̃2) ∈ W4,5. Therefore we

have

4∑

j=1

a−ξ1jT (x̃+ ξ1j) =
32
3
√
3

4∑

j=1

a−ξ1j(x̃1 + j)x̃32+ ,

and in x-coordinates

4∑

j=1

a−ξ1jT (x+ ξ1j) =




4∑

j=1

ja−ξ1j


 g1(σx) +




4∑

j=1

a−ξ1j


 g2(σx) . (5.76)

Similarly, for the third summation term of (5.74), let x̂ = σF1x be a rotated and

reflected coordinate system. The truncated power function is given by T (x̂) = 32
3
√
3
x̂1x̂

3
2+
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for x̂ ∈W0,1. In x̂-coordinates we have x̂(ξ2) = (1, 0) and if x̂ ∈ |N1(0,K6)| and j ≥ 1 then

x̂+ ξ2j = (x̂1 + j, x̂2) ∈W0,1. Therefore we have

4∑

j=1

a−ξ2jT (x̂+ ξ2j) =
32
3
√
3

4∑

j=1

a−ξ2j(x̂1 + j)x̂32+

and in x-coordinates

4∑

j=1

a−ξ2jT (x+ ξ2j) =




4∑

j=1

ja−ξ2j


 g1(σF1x) +




4∑

j=1

a−ξ2j


 g2(σF1x) . (5.77)

Substituting (5.75), (5.76), and (5.77) into (5.74) and rearranging terms gives the de-

composition.

The next proposition is similar except we construct a decomposition which is symmetric

with respect to the reflection F2. Let X = [ξ1, ξ2 ,ξ3] be as in the definition of the equilateral

grid (5.5). Let X1 = [ξ3, ξ2,−ξ1] and X2 = [−ξ3, ξ2,−ξ1], be alternative direction sets for

the equilateral grid, and let Ti = TX222i
for i = 1 or 2 be the corresponding truncated power

function. The corresponding centered difference operators are equal since we have only

changed the orientation of directions, i.e., ∇c
X2221

= ∇c
X2222

= ∇c
222. Expressing a quartic box

spline function as a truncated power series (5.12) we get

f(x) =
∑

v∈K6
(∇c

222f)vT1(x− v) =
∑

v∈K6
(∇c

222f)vT2(x− v) .

Therefore with T = 1
2(T1 + T2) we have

f(x) =
∑

v∈K6
avT (x− v) , (5.78)

where av = (∇c
222f)v. The piecewise polynomial representation of T is

T (x) =





T+(x) = 16
3
√
3
x1x

3
2 for x ∈W0,

T0(x) = −2x41 + 4x21x
2
2 +

2
3x
4
2 for x ∈W1,

T−(x) = − 16
3
√
3
x1x

3
2 for x ∈W2,

0 for x ∈W3,W4, or W5 .

(5.79)



117

Proposition 74. The quartic box spline function on N1(0) given in (5.69) can be written

f(x) = p(x) +
6∑

i=0

C̃iẼi(x) for x ∈ |N1(0,K6)|, (5.80)

where p ∈ P∆4 . The functions Ẽi are as follows:

Ẽ0(x) = g1(x) Ẽ3(x) = g2(x)

Ẽ1(x) = g1(σx)− g1(σF2x) Ẽ4(x) = g2(σx) + g2(σF2x) (5.81)

Ẽ2(x) = g1(σx) + g1(σF2x) Ẽ5(x) = g2(σx)− g2(σF2x)

Ẽ6(x) = T (x)

The function Ẽj is even or odd with respect to F2 when j is even or odd respectively, and

E0, E1, and E2 are homogeneous of degree 3 while the other functions Ẽj are homogeneous

of degree 4.

The coefficients C̃i are computed in terms of the truncated power series coefficients au =

(∇c
222f)u, where we have extended the control net f by fu = 0 for u /∈ N2(0,K6). The

coefficients are given as follows:

C̃0 =
1

2

4∑

j=1

j(a−jξ3 + ajξ3) C̃1 =
1

2

4∑

j=1

j (a+jξ1 − a−jξ2)

C̃2 =
1

2

4∑

j=1

j (a+jξ1 + a−jξ2) C̃3 =
1

2

4∑

j=1

(a−jξ3 − ajξ3) (5.82)

C̃4 =
1

2

4∑

j=1

a−jξ2 + ajξ1 C̃5 =
1

2

4∑

j=1

a−jξ2 − ajξ1

C̃6 = a0

Proof. We first comment that the basis functions Ẽj clearly satisfy the symmetry and ho-

mogeneity conditions. Combining all the terms in (5.78) that are polynomial on |N1(0,K6)|
into a single term p(x) we have

f(x) = p(x)+a0T (x)+
∑

1≤|j|≤4
ajξ3T (x−jξ3)+

4∑

j=1

a−jξ2T (x+jξ2)+
4∑

j=1

ajξ1T (x−jξ1). (5.83)
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Thus for x ∈ |N1(0,K6)| ∩W0,1,2 the first sum in (5.83) can be written as

∑

1≤|j|≤4
ajξ3T (x− jξ3) =

4∑

j=1

a−jξ3T+(x+ jξ3) + ajξ3T−(x− jξ3)

=
16

3
√
3

4∑

j=1

a−jξ3(x1 + j)x32 − ajξ3(x1 − j)x32

=
16

3
√
3

4∑

j=1

(a−jξ3 − ajξ3)x1x32 +
16

3
√
3

4∑

j=1

j (a−jξ3 + ajξ3)x
3
2

= C̃0Ẽ0(x) + C̃3Ẽ3(x) . (5.84)

Let x̃ = σx be a rotated coordinate system. We can represent T in W1,2 as a sum of

p ∈ P∆4 and a truncated power function, namely,

T (x̃) = (x̃41 − 2x̃21x̃
2
2 +

8
3
√
3
x̃1x̃

3
2)− 32

3
√
3
x̃1x̃

3
2+ for x ∈W1,2 .

So if x̃ ∈ |N1(0,K6)| and j ≥ 1 then x̃− jξ1 = (x̃1 − j, x̃2) ∈W1,2 and thus

4∑

j=1

ajξ1T (x̃− jξ1) = p(x̃)− 32

3
√
3

4∑

j=1

ajξ1(x̃1 − j)x̃32+

and in x-coordinates we have

4∑

j=1

ajξ1T (x− jξ1) = p(x) +




4∑

j=1

jajξ1


 g1(σx)−




4∑

j=1

ajξ1


 g2(σx) . (5.85)

Similarly, let x̂ = σF2(x) be another coordinate system. OnW0,1 we can again represent

T by T (x̂) = p(x̂) − 32
3
√
3
x̂1x̂

3
2+, where p ∈ P∆4 . So if x̂ ∈ |N1(0,K6)| and j ≥ 1 then

x̂+ jξ2 = (x̂1 − j, x̂2) ∈W0,1 and thus

4∑

j=1

a−jξ2T (x̂+ jξ2) = p(x̂)− 32

3
√
3

4∑

j=1

a−jξ2(x̂1 − j)x̂32+

and in x-coordinates we have

4∑

j=1

a−jξ2T (x+ jξ2) = p(x) +




4∑

j=1

ja−jξ2


 g1(σF2x)−




4∑

j=1

a−jξ2


 g2(σF2x) . (5.86)

The proposition follows from (5.85) and (5.86) by rearranging terms.
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We end this section with a proposition about the basis functions.

Proposition 75. For j = 0, 1 or 2 we have Lh6Ej = Lh6Ẽj = 0.

Proof. We begin by noting that Lh6g1 = 0. Indeed, since g1(x1, x2) is only a function of x2,

we see that the integral in

Lh6g1(v) = h−3
6∑

i=0

mi
6

1

π(hρ)2

∫

B(hρ)
g1(v + hδi + x)dx

is the same for i and i′ if δi,2 = δi′,2. But in this case, mi
6 = −mi′

6 , so L
h
6g1 = 0.

Next notice that for j = 0, 1 or 2, the basis function Ej is composed of a sum of functions

of the form g1 ◦ σ, where σ is an orthogonal map which leaves the stencil invariant. In

particular, we write σ(δi) = δσi and we have mσi = ±mi. This allows us to conclude that

Lh6gi ◦ σ(v) = h−3
6∑

i=0

mi
6

1

π(hρ)2

∫

B(hρ)
g1(σv + hδσi + σx)dx

= ±h−3
6∑

i=0

mi
6

1

π(hρ)2

∫

B(hρ)
g1(σv + hδi + x)dx

= ±Lh6g1(σv) = 0 .

5.7.2 Corner Case A

Since τ1(x) is even with respect to F1, while τ2(x) is odd, we can apply Proposition 73 as

in (5.65) to get τ = p+G3 +G4 on |N1A|, where

p =


p1
p2


 , G3 =


b

0
1E0 + b21E2

b12E1


 and G4 =


b

4
1E4 + b61E6 + b81E8

b52E5


 . (5.87)

Starting with the 2-neighborhood control net for an equivariant characteristic map as

in Figure 2.6, we can apply Loop’s subdivision rules twice and rescale to compute the 5-

neighborhood control net. Then we extract the control net on N2(A), which determines τ

on |N1A|, compute the truncated power series coefficients a = ∇c
222τ , and apply (5.72) to
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get the following:

b01 =
−3

(
1 + 2 cos(4πn )

)

2
(
3 + 2 cos(2πn )

) (
5 + 4 cos(2πn )

) b12 = −
sin(6πn )

(
3 + 2 cos(2πn )

)2

b21 =
2 cos(πn)

2 (1 + 2 cos(4πn )
)

(
3 + 2 cos(2πn )

)2

b41 =
6 cos(πn)

2 (1 + 2 cos(4πn )
)

(
3 + 2 cos(2πn )

) (
5 + 4 cos(2πn )

) b52 =
sin(6πn )

2
(
3 + 2 cos(2πn )

)2 (5.88)

b61 =
5 cos(πn)

2 (1 + 2 cos(4πn )
)

(
3 + 2 cos(2πn )

)2

b81 =
−6 cos(πn)

2 (1 + 2 cos(4πn )
)

(
3 + 2 cos(2πn )

)2

To compute the D111p(A) term in (5.67), notice that D111Ei(0) = 0 for all i, therefore

D111τ(A) = D111p(A). The left side of this equality can be computed from the control net.

By (5.10) we have

D111τ(x) =
∑

(∇111τ)vM111(x− v + 2ξ3).

The box spine M111 is the piecewise linear hat function defined by M111(v) = δ(v, ξ3), so

D111τ(A) = (∇111τ)A+ξ3 = (∇c
111τ)A.

So applying the difference operator to the characteristic control net we get

D111τ(A) =

(
−2− 4 cos(4πn )(

3 + 2 cos(2πn )
) (

5 + 4 cos(2πn )
) , 0
)
, (5.89)

which is zero only if n = 3 or 6.

Now we write the matrix M(hu, h) in (5.67), using Proposition 75 to get

M(hu, h) =


D111τ1(A) b01L

1
7E0(u) + b21L

1
7E2(u)

0 b12L
1
7E1(u)


+O(h) .

Lemma 76. There are constants h0 and C > 0 such that for any (v, h) ∈ VIII.A with h < h0

we have solutions w6(v, h) and w7(v, h) to the polynomial reproducing system (5.55) such

that |w6(v, h)| and |w7(v, h)| < C.
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u L17E1(u)

(12 ,
√
3
2 )

64 (−64
√
3 ρ3+81π (−1+ρ2))
243π

(32 ,
√
3
2 )

−64 (−32
√
3 ρ3+27π (1+ρ2))
243π

(52 ,
√
3
2 ) −2048 ρ3

405
√
3π

(1,
√
3)

128 (−16
√
3 ρ3+27π (−2+ρ2))
243π

(2,
√
3)

−64 (−128
√
3 ρ3+135π (1+ρ2))
1215π

Figure 5.8: Values of L17E1(u).

Proof.

Case 1: n = 3 or 6. From (5.88) we see bi1 = bi2 = 0 for i = 0, . . . , 8, so the components

of the Loop characteristic map are polynomials on |N1A|. Therefore by Proposition 71, the

right side of (5.55) is 0. So w6(v, h) = w7(v, h) = 0 is a trivial solution.

Case 2: n 6= 3 or 6, and (hu,h) ∈ VIII.A with u1 6= 0 and u2 6= 0. Since b12 6= 0 and

L17E1(u) 6= 0 (as shown in Figure 5.8), we see that in the limit, as h goes to 0, the matrix

M(hu, h) is invertible. Hence solutions exist and are bounded for sufficiently small h.

Case 3: n 6= 3 or 6, and (hu,h) ∈ VIII.A with u2 = 0. Since τ2 is odd with respect to

F1, we have L16τ2(u) = L17τ2(u) = R1τ2(u) = 0, i.e., the bottom rows of (5.67) and (5.68)

are 0. Then since D111τ1(A) is non-zero, we have solutions w6(hu, h) and w7(hu, h) = 0 for

sufficiently small h satisfying a bound |w6(hu, h)| < C.

Case 4: n 6= 3 or 6, and (hu,h) ∈ VIII.A with u1 = 0 and u2 = ±
√
3. In this case the

analysis is more complicated. From an explicit computation one can show L17E1(u) =
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R1E1(u) = 0. So (5.67) reduces to

M(hu, h) =


D111τ1(A) L17G3,1

0 0


+ h


Ψ1 + L16G4,1 L17G4,1

Ψ2 + L16G4,2 L17G4,2


 (5.90)

and

Rh(u) =


R

1G3,1(u)

0


+ hR1G4(u) . (5.91)

Computing the determinate of M(hu, h) we get

det(M(hu, h)) = h
(
D111τ1(A) · L17G4,2(u)− L17G3,1(u) · (Ψ2(u)− L16G4,2(u))

)
+O(h2) .

By an explicit computation we show that the coefficient of h is non-zero. LetMj(hu, h)|Rhτ(u)
be the matrix formed by replacing the j-th column of M(hu, h) with Rhτ(u). Then clearly

det(Mj(hu, h)|Rhτ(hu)) = O(h). So by Cramer’s rule

w5+j(hu, h) =
det(Mj(hu, h)|Rhτ(u))

det(M(hu, h))

for j = 1 or 2. Thus for a sufficiently small h, solutions exist and are bounded.

5.7.3 Corner Case B

Here τ1(x) is odd and τ2(x) is even with respect to F2. Starting with the 2-neighborhood

control net for an equivariant characteristic map, as in Figure 2.6, we can apply Loop’s

subdivision rules twice and rescale to compute the 5-neighborhood control net. Then we

extract the control net on N2(B) which determines τ on |N1B|, compute the truncated

power series coefficients a = ∇Xτ , and apply (5.82) to get the following:

b11 = 0 b02 =
−3 cos(πn)

(
1 + 2 cos(4πn )

)
(
3 + 2 cos(2πn )

)2

b31 =
4 cos(πn)

2 (sin(πn)− sin(3πn ) + sin(5πn )
)

(
3 + 2 cos(2πn )

)2 b22 = 0 (5.92)

b51 = 0 b42 =
−4

(
cos(πn) + cos(3πn ) + cos(5πn )

)

3 + 2 cos(2πn )

b62 =
2
(
cos(πn) + cos(3πn ) + cos(5πn )

)

3 + 2 cos(2πn )
.
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Applying Proposition 74, as in (5.65), we get τ||N1B| = p+G3 +G4, where

p =


p1
p2


 , G3 =


 0

b02Ẽ0


 G4 =


 b31Ẽ3

b41Ẽ4 + b61Ẽ6


 .

One can compute D111Ẽi(0) = 0 for all i, therefore D111τ(B) = D111p(B) which can be

computed from the control net using (5.7.2). We compute

D111τ(B) =

(
2
(
sin(πn)− sin(3πn ) + sin(5πn )

)

(3 + 2 cos(2πn ))(5 + 4 cos( 2πn ))
, 0

)
, (5.93)

which is zero only if n = 3 or 6. Now we write the matrix on the left side of (5.67) in terms

of u and h. We use Proposition 75 to get

M(hu, h) =


D111τ1(B) 0

0 b02L
1
7E0(u)


+O(h) .

Lemma 77. There are constants h0 and C > 0 such that for any (v, h) ∈ VIII.B with

h < h0 we have solutions w
6(v, h) and w7(v, h) to the polynomial reproducing system (5.55)

with |w6(v, h)| and |w7(v, h)| < C.

Proof.

Case 1: n = 3 or 6. From (5.88) we see bi1 = bi2 = 0 for i = 0, . . . , 8, so the components of

the Loop characteristic map are polynomials on |N1B|. Therefore, by Proposition 71, the

right side of (5.55) is 0. So w6(v, h) = w7(v, h) = 0 is a trivial solution.

Case 2: n 6= 3 or 6, and (hu,h) ∈ VIII.A with |u2| ≤
√
3. We claim that M(hu, h) is

invertible in the limit. SinceD111τ1(B) and b02 are non-zero, we need only show that L17Ẽ0(u)

is also non-zero.

For any u = (u1, u2) ∈W we have

L17Ẽ0(u) =
18∑

i=0

mi
7

1

πρ2

∫

B(ρ)
Ẽ0(v + x+ δi)dx

=
18∑

i=0

mi
7

32

3
√
3πρ2

∫

B(ρ)
(v2 + x2 + δi2)

3
+dx1dx2 .

So this quantity depends only on ũ2 and ρ. Figure 5.9 tabulates these values showing that

they are not zero.
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ũ2 L17Ẽ0(u)

±
√
3 2048 ρ3

405
√
3π

±
√
3/2

64 (−128
√
3 ρ3+135π (1+ρ2))
1215π

0
−128 (−32

√
3 ρ3+45π (−2+ρ2))
405π

Figure 5.9: Values of L17Ẽ0(u).

Case 3: n 6= 3 or 6 and (hu,h) ∈ VIII.B with |u2| >
√
3. Here, the analysis of case

2 does not apply because L17Ẽ0(u) = 0. Since Ẽ0 and Ẽ3 are in P∆4 on N3(u), we have

L17Ẽj = R1Ẽj = 0 for j = 0 or 3.

Thus the linear system reduces to

M(hu, h) =


 D111τ1(B) +O(h) 0

O(h) h
(
b42L

1
7Ẽ4 + b62L

1
7Ẽ6

)

 (5.94)

and

Rhτ(u) = h


 0

b42R
1Ẽ4 + b62R

1Ẽ6


 . (5.95)

By explicitly computing b42L
1
7Ẽ4 + b62L

1
7Ẽ6 at the four possible points u ∈ W one can show

this is non-zero and hence there is a solution of the form w6(hu, h) = 0, and w7(hu, h)

depends only on u.
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Chapter 6

APPLICATIONS AND FUTURE DIRECTIONS

We have proved that Loop’s subdivision functions approximate functions in a second-

order Sobolev space. Our main theorem, which proves this, gives the order of decay of

the approximation error when approximating a sufficiently smooth function. In this final

chapter we summarize the theory developed in this thesis and discuss possible directions for

extensions and an application of the theory.

In Section 6.1 we summarize this work and discuss the methods and results. In Sec-

tion 6.2 we discuss possible extensions to the theory which could be explored in future

investigations. Section 6.3 briefly outlines how subdivision surfaces can be used with the

finite element method to solve a differential equation, and we show how our approximation

theory can be applied to derive convergence rates for this application.

6.1 Summary

6.1.1 Smooth Structures on Simplicial Surfaces

In Chapter 2 we developed the basic theory of stationary subdivision surfaces defined on

simplicial surfaces. In Section 2.1 we reviewed simplicial complexes, and defined subdivision

schemes and subdivision (limit) functions. The definitions are similar to, and motivated by,

the definitions in Chapter 2 of Zorin [25], although I think the definitions here are cleaner.

In Section 2.2 we defined an affine atlas on a simplicial surface K, excluding extraordi-

nary vertices. Loop’s subdivision functions are piecewise polynomial in affine coordinates.

In Section 2.3 we defined the n-regular complexes Kn and the contraction map which

acts on Kn. The n-regular complexes are the model neighborhoods. The analysis of a

subdivision scheme reduces to considering the scheme on the n-regular neighborhoods. The

symmetries of Kn and the scaling provided by the contraction map play an important
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role. The symmetries are generated by a rotation and a reflection. But notice, there is no

translation symmetry on Kn. Recall translation symmetry underlies many of the analysis

techniques on Rn, e.g., the Fourier transform.

In Section 2.4 we introduced the key tools for analysis of subdivision surfaces, the sub-

division map (or subdivision matrix) and the characteristic map. Since subdivision surfaces

were introduced by Catmull, Clark, Doo and Sabin in [4, 7] the analysis of these surfaces

has been based on the subdivision matrix. The characteristic map, derived from the eigen-

vectors of the subdivision matrix, was introduced by Reif in [16]. He proved that if the

characteristic maps are regular and injective, then subdivision surfaces are C1 for almost

every control net.

We defined characteristic coordinate charts on a simplicial complex in Section 2.5. Sup-

pose S is a stationary subdivision scheme with characteristic maps for every valence. For

any finite simplicial complex K without boundary and a vertex v ∈ K, the interior of the 1-

neighborhood |N1(v)|◦ is a characteristic coordinate neighborhood. We used a characteristic

map to define a characteristic coordinate chart on this neighborhood.

This is primarily a different interpretation of the work of Reif. In the parallel theory,

we showed that if subdivision functions are Cr away from extraordinary vertices and the

characteristic maps are regular and injective, then characteristic charts on a complex K

form a Cr atlas on |K|. We call such a scheme a Cr-subdivision scheme. We then showed in

Proposition 17 that subdivision functions are C1 with respect to this atlas. As a corollary

we have the following.

Corollary 78. Given an R3-valued control net on a simplicial surface without boundary, if

the generated subdivision function is injective and everywhere of full rank, then its image is

a C1-surface embedded in R3.

A subdivision surface is the image of a C1-differentiable map f : |K| → R3. This map

is the natural generalization of a parameterization for the surface. Actually, the surface

is covered by local parameterizations. This framework is advantageous since, given a C r-

subdivision scheme, we have a class of Cr functions on a subdivision surface, even though

the surface itself is only C1. We exploited these smooth functions in our approximation
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theorem.

In Section 2.6 we extended the degree of smoothness by introducing the class Cr,1
loc,

consisting of functions that are of class Cr and for which all the derivatives of order r are

locally Lipschitz. For instance, since Loop’s subdivision scheme is a C2,1loc -subdivision scheme

it induces a C2,1loc -smooth structure on a simplicial surface.

In the final section, Section 2.7, we prove a number of geometric facts in characteristic

coordinates about the simplicial neighborhoods NdT for faces T ∈ Kk
n.

6.1.2 Approximation in Sobolev Spaces

In Chapter 3 we defined Sobolev norms on a simplicial surface using the CR,1
loc -atlas induced

by a stationary subdivision scheme. A function defined on a simplicial surface |K| is in the

Sobolev space Hs(K) for s ≤ R + 1 if its characteristic coordinate representations are in

Hs.

The Sobolev norm is especially well suited to studying approximation properties of

stationary subdivision schemes such as Loop’s. We discuss three benefits. First, Sobolev

norms measure derivatives as well as function values. In geometric modeling applications it

is important to at least approximate first derivatives accurately, since, for instance, the first

derivatives are explicitly used in the form of normal directions for lighting calculations.

Secondly, a Sobolev norm is more forgiving at isolated points than the corresponding

supremum norm of derivatives. For instance, Loop’s subdivision functions are not C2 at

extraordinary vertices [17]. However, as we showed in Theorem 42, Loop’s subdivision

functions on a simplicial surface |K| are in H2(K). Furthermore, Theorem 2 shows that

subdivision functions can approximate the curvature of a surface to arbitrary accuracy as

measured in the L2-norm.

Thirdly, in certain applications such as the finite element method it is approximation

in the Sobolev norm which ensures convergence of the method. Applications to the finite

element method are discussed in Section 6.3.

In Section 3.3, we constructed approximations to a function f on |K| using local ap-
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proximations in characteristic coordinates. Suppose a family of local, linear operators

Qk : L1Λ,loc(Kn)→ S(Kk
n) (6.1)

satisfies the approximation error bound

‖Qkf − f‖Hs
Λ
= O(λ(r−s−ε)kmax ) (6.2)

for a function f ∈ Hr(Kn). We used a partition of unity {ρv : v ∈ Vertex(K)} subordinate

to the covering {|N1(v)|◦ : v ∈ Vertex(K)} to construct cut-off local representatives fv =

ρv · f in each coordinate chart. We used the local operators Qk to approximate the cut-off

representatives and then added the approximations to get a global approximation

P kf =
∑

v∈K
Qk(ρv · f) ∈ S(Kk).

Theorem 43 gives a bound for the global approximation error,

‖P kf − f‖Hs(K) = O(λ(r−s−ε)kmax ) .

6.1.3 The Main Theorem

The main result of this thesis gives the approximation order of Loop’s subdivision functions.

We restate the main theorem and two immediate corollaries.

Theorem 2. Let S(Kk) be the space of Loop’s subdivision functions on the k-times

subdivided complex Kk. For integers 0 ≤ s < r ≤ 3 and any ε > 0 we have the following

bound on the minimal Hs(K)-approximation error of a function f ∈ Hr(K):

dist(f, S(Kk))Hs(K) ≤ Cελ
(r−s−ε)k
max ‖f‖Hr(K) , (6.3)

where the constant Cε = C(ε,K) is independent of k and f .

Corollary 3. Given a smooth function f ∈ H3(K) we have

dist(f, S(Kk))L2(K) = O(λ(3−ε)k) (6.4)

for any ε > 0, where λ = λmax(K).

Corollary 4. The space of Loop’s subdivision functions at all levels
⋃∞
0 S(Kk) is dense

in H2(K).
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The second corollary is proved by approximating a function f ∈ H2(K) by smoother

functions in H3(K) then applying Theorem 2. We say the approximation power of Loop’s

subdivision functions is order 3 because of the exponent in (6.4).

The comparable theorem for quartic triangular splines shows that quartic splines have

order 4 approximation power.

Theorem 79. Suppose Sk = span{φ(2k(· − v)) : v ∈ 2−kZ2} are nested spaces of splines
where φ = M222 is the quartic triangular box spline basis function. Then for integers

0 ≤ s < r ≤ 4 we have the following approximation error bound

dist(f, Sk)Hs ≤ C(12)
(r−s)k‖f‖Hr , (6.5)

where C is independent of f and k.

The two main differences between the estimates (6.3) and (6.5) are the base and the

maximum exponent in the rate of decay for the approximation error. The maximum factor

of k in exponent is the approximation order. The approximation order for Loop’s subdivi-

sion functions is one less than the approximation order for quartic triangular splines. The

decrease in approximation power is caused by the behavior of subdivision surfaces at ex-

traordinary vertices. The natural strengthening of (6.3) to a higher-order of approximation

would involve ‖f‖H4(K), but this space is not even well defined for a C2,1loc -subdivision scheme

such as Loop’s. To prove that the bound in Theorem 2 is sharp is open.

The base λmax in the decay rate of (6.3), as compared to the base 1
2 in (6.5), is due to the

characteristic coordinate chart. In the introduction to Chapter 4, we reviewed a standard

application of the quasi-interpolant method to prove Theorem 79. The base 1
2 in (6.5) came

from the equality diamNdT = C(12)
k for any face T in the subdivided regular grid Kk

6 . The

base λmax in (6.3) was similarly derived from diamNdT . In this case T is a face in the sub-

divided n-regular complex Kk
n, and the diameter is measured in characteristic coordinates.

In Section 2.7 we proved that diamΛ(NdT ) < Cλkmax(Kn). For Loop’s subdivision scheme,

the sub-dominant eigenvalue of the subdivision map for a vertex of valence n is given by

λ = 3
8 +

1
4 cos

(
2π
n

)
.



130

So for valences greater than 6, the rate of error decay in (6.3) for r = 3 and s = 0 is less

than (12)
3k.

6.1.4 Approximation via Quasi-Interpolants

We defined the properties of a quasi-interpolant on Kn in Chapter 4, and proved a bound

on its approximation error.

We could directly apply the quasi-interpolant technique to the problem of approximation

on Kn. By constructing a family of maps Qk : L1Λ,loc(Kn)→ S(Kk
n) that is local, bounded,

and reproduces quadratic polynomials in characteristic coordinates, we could prove that the

approximation error of the quasi-interpolant would satisfy the estimate (6.2). However, for

Loop’s subdivision scheme, and most other subdivision schemes that produce C1-smooth

surfaces, the quadratic polynomials on Kn are not subdivision functions. It is necessary

to have quadratic polynomials on Kn as subdivision functions in order for a scheme to

produce C2-surfaces with non-zero curvature at extraordinary points (see Zorin [23]). So

direct application of the quasi-interpolant method on Kn would involve constructing a

quasi-interpolant that reproduced linear polynomials in characteristic coordinates. Such a

quasi-interpolant would only demonstrate second-order approximation power.

The key to showing Loop’s subdivision functions have third-order approximation power

is to also take advantage of polynomial reproduction in affine coordinates. By Definition 44

in Section 4.1, an order r quasi-interpolant on Kn must reproduce polynomials in charac-

teristic coordinates of degree less than r − 1, and must locally reproduce affine coordinate

polynomials of degree less than r away from the central vertex. Theorem 45 is the main

theorem of Chapter 4. It shows that a quasi-interpolant on Kn of order r results in an order

r approximation error as in (6.2).

The approximation theorem on Kn (Theorem 45) is proved in Section 4.3. The proof

follows the same outline as the proof for the approximation theorem for quartic splines

which we proved in the introduction to Chapter 4. We proved the result by estimating

the approximation error ‖Qkf − f‖Hs
Λ
(T ) on a single face T of Kk

n. We approximated f

on a neighborhood of T by a quadratic polynomial g ∈ P2(Kn), and we used the triangle
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inequality and the boundedness and locality of Qk to get

‖Qkf − f‖Hs
Λ
(T ) ≤ ‖Qk(f − g)‖Hs

Λ
(T ) + ‖Qkg − g‖Hs

Λ
(T ) + ‖f − g‖Hs

Λ
(T )

≤ (1 + C)‖f − g‖Hs
Λ
(NdT ) + ‖Qkg − g‖Hs

Λ
(T ) . (6.6)

Now since Q does not reproduce P2(Kn), we had to estimate the last term in (6.6). In

Section 4.3.2 this term was bounded using the polynomial reproducing properties of the

quasi-interpolant in affine coordinates.

We presented an alternative boundedness criteria for a quasi-interpolant on Kn in Sec-

tion 4.4. This new criteria is simpler to verify as it only concerns the level k = 0 instance of

Qk. The bounds are in affine coordinates, where the subdivision functions are translation

invariant, making them easier to analyze.

6.1.5 Construction of a Quasi-Interpolant

The main theorem of Chapter 5 is Theorem 57, showing that we can construct an order 3

quasi-interpolant onKn for Loop’s subdivision functions. By Lemma 55 we had to construct

a rotation equivariant map Q : L1Λ,loc(Kn)→ S(Kn) that is local with support width d and

that satisfies the semi-norm estimates in affine coordinates

|Qf |Hm
A (T )

≤ |Q| |f |Hm
A (N

c
d
T ) (6.7)

on each face T ∈ Kn and m = 0, 1 or 2. Additionally, Q has to reproduce linear polynomi-

als in characteristic coordinates and locally reproduce functions that are locally quadratic

polynomials in affine coordinates.

We constructed the quasi-interpolant as a composition of three maps

Q : L1Λ,loc(Kn)
R−→ CN(Kn)

A−→ CN(Kn)
S∞−→ S(Kn) , (6.8)

namely, the restriction map R, the averaging operator A, and the subdivision limit operator

S∞. Properties of box splines are catalogued in Section 5.1. In Section 5.2, we introduced

Sobolev norms and semi-norms on control net spaces, which are the intermediate spaces in

the composition (6.8). We then analyzed the boundedness of each component separately.

The restriction operator produces a control net from a function on |Kn|. The control value
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at a vertex is calculated by averaging the function over a small ball centered at the vertex.

Propositions 61 and 63 showed that S∞ and R satisfy semi-norm estimates that were used,

together with similar estimates on A, to prove (6.7).

In Section 5.3 we constructed an averaging operator A, to achieve the desired polynomial

reproducing properties. Locally, in the neighborhood of a face T ∈ Kn, the quasi-interpolant

Q must reproduce an 8-dimensional space of functions, consisting of the 6-dimensional space

of affine quadratic polynomials and the 2-dimensional space spanned by the components of

a characteristic map. For each vertex v ∈ Kn and control net u ∈ CN(Kn), we defined (Au)v

to be a weighed average of control values of u in the 2-neighborhood of v. In particular, we

defined an 8 parameter vector space of possible weights. Then at each vertex v ∈ Kn we

wrote an 8× 8 linear system that the weights had to satisfy so that a basis of polynomials

would be reproduced. This system was simplified to a 2 × 2 system called the polynomial

reproducing system. Lemma 69 claims that the polynomial reproducing system has solutions

for all vertices sufficiently far from the central vertex. We used this Lemma to prove

Theorem 57, the main theorem of Chapter 5. In Sections 5.4-5.7 we proved Lemma 69 by

considering three different classes of vertices v ∈ Kn. The classes are distinguished by how

many polynomial pieces the characteristic map has on the N3(v,Kn) neighborhood of v.

6.2 Future Extensions of the Theory

It would be useful to have a more general theory. In particular, the main theorem only

applies to Loop’s subdivision scheme. Chapters 2, 3 and 4 do however apply to general

stationary subdivision schemes defined on simplicial surfaces. For instance, one might be

able to use a modified Loop’s subdivision scheme, as defined in Section 2.1.4, to get the

subdominant eigenvalues λ of the subdivision map closer to 1
2 for valences greater than 6.

The new scheme is a C2,1loc subdivision scheme if the characteristic maps are injective and

regular. Then if we could construct an order 3 quasi-interpolant, we could get a rate of decay

for the approximation error that is faster than that for Loop’s subdivision functions. Zorin,

Peters and Reif [23, 14] have presented general methods to determine if the characteristic

maps for general subdivision schemes are injective and regular.
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Extending the approximation result to Catmull-Clark’s subdivision scheme and its gen-

eralizations is also desirable. Catmull-Clark’s subdivision schemes generate C1-smooth sur-

faces so the characteristic maps could be used to construct a C2,1loc -manifold on an initial

mesh. Chapter 4 is still applicable with small changes to accommodate rectangles instead

of triangles. The existence of a high-order quasi-interpolant for these schemes would have

to be shown.

Numerical corroboration of the result and the sharpness of the result are two other issues

which should be explored. The estimate is sharp if the rate of decay of the approximation

error λ
(3−s)k
max is the fastest possible for all f ∈ H3(K).

6.3 Application: Finite Element Method on Surfaces

Approximation theory has been a powerful tool in the analysis of applications which rely

on producing approximations to some ideal result. Examples include signal processing,

image processing, numerical solution of differential equations, numerical integration and

data fitting. In particular, we discuss the application of subdivision surfaces to the problem

of approximately solving partial differential equations on surfaces.

The finite element method (FEM) is a numerical technique to approximate the solution

to a partial differential equation. We show how to construct FEM approximations, for

a partial differential equation on a surface, that are subdivision functions. Cirak et al.,

[9], describes how to use subdivision functions to solve elasticity problems on thin shell

structures. As an example, we discuss a simpler problem, the Poisson problem on a surface.

Then we use the standard error analysis technique for the FEM (see Brenner and Scott

[3]) together with our approximation theorem, to show the convergence rate of the finite

element method.

Let ψ : |K| → R3 be a Loop’s subdivision surface on a base simplicial surface K without

boundary. We represent a function on the surface ψ(K) as a function on |K|. There are

differential operators ∆ and ∇ acting on functions defined on the surface, which generalize

the Laplacian and gradient on R2 (see Taylor [21] for their definitions). The Poisson problem
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is to find a function u on |K| such that

∆u = f on |K| and (6.9)
∫
u ds = 0 , (6.10)

where
∫
f ds = 0 and ds represents integration with respect to surface area. This equation

models, for instance, the steady-state temperature distribution on a surface due to a steady

source f . Since there is no heat lost through a boundary, the net effect of the source must

be zero to ensure a steady state.

The first step in applying the FEM is to rewrite the differential equation as a variational

problem. The operators ∆ and ∇ satisfy a Green’s identity

∫
∆u · v ds = −

∫
〈∇u,∇v〉 ds , (6.11)

where 〈·, ·〉 is the dot product of vectors on the surface. Multiplying both sides of (6.9)

by v ∈ H1(K) and integrating over the surface, we get the variational form of Poisson’s

equation: Find u ∈ H1
0 (K) = {f ∈ H1(K) :

∫
f ds = 0} such that

∫
〈∇u,∇v〉 ds = −

∫
fv ds for all v ∈ H1(K) . (6.12)

We construct an approximate solution from the trial space S0(K
k) of Loop’s subdivision

functions at level k, i.e. v ∈ S(Kk), such that
∫
v ds = 0 . Notice that for any v ∈ S(Kk),

we have v0 = v − 1
area(K)

∫
v ds ∈ S0(Kk), where area(K) is the surface area of ψ(K) . The

Galerkin FEM approximation uk ∈ S0(K
k) is defined as the solution of the finite-dimensional

version of the variational problem

∫
〈∇uk,∇v〉 ds = −

∫
fv ds for all v ∈ S0(K

k) . (6.13)

This is a linear problem with a unique solution.

By standard FEM error analysis, we now show that the Galerkin approximation uk is,

in a sense, the best approximation to the true solution u from the space S0(K
k). We define

a symmetric positive definite bilinear form a by

a(f, g) =

∫
〈∇f,∇g〉 ds , (6.14)
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and the induced norm ‖f‖E = a(f, f)1/2 on H1
0 (K) called the energy norm.

From (6.12) and (6.13) we see that a(u − uk, v) = 0 for all v ∈ S(Kk). Therefore, for

any v ∈ Sk we have

‖u− uk‖2E = a(u− uk, u− uk)

= a(u− uk, u− v) + a(u− uk, v − uk) .

The second term is zero since v−uk ∈ Sk, and therefore, by the Cauchy-Schwarz inequality,

we have ‖u− uk‖2 ≤ ‖u− uk‖E‖u− v‖E . Dividing by ‖u− uk‖E we get

‖u− uk‖E ≤ ‖u− v‖E for all v ∈ Sk .

The energy norm on H1
0 (K) is equivalent to the H1(K)-norm as we have defined it in

Section 3. Therefore there is a constant C such that

‖u− uk‖H1 ≤ C dist(u, S(Kk))H1 .

Assuming that u ∈ H3(K), we apply our main approximation theorem to get

‖u− uk‖H1 ≤ Cλ2k

for any λ < λmax.

6.4 Conclusion

Subdivision surfaces are a smooth geometric modeling primitive that can model surfaces

of arbitrary topology. We have proved an approximation theorem for Loop’s subdivision

surfaces in Sobolev spaces. Loop’s subdivision functions have order 3 approximation power.

This is a higher-order of approximation power than for piecewise linear functions or trian-

gular meshes, which have order 2 approximation power. However, the approximation power

of Loop’s subdivision functions is not as high as the approximation power of the quartic

triangular splines from which they are derived. These have order 4 approximation power.

This result can be used to give convergence rates for finite element methods using sub-

division functions.
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