CONTACT GEOMETRY AND CR-STRUCTURES ON
SPHERES

JOHN BLAND AND TOM DUCHAMP

ABSTRACT. A normal form for small CR-deformations of the
standard CR-structure on the (2n + 1)-sphere is presented. The
space of normal forms is parameterized by a single function on the
sphere. For n > 1, the normal form is used to obtain explicit em-
beddings into C”*t!'. For n = 1, the cohomological obstruction to
embeddability is identified.

1. INTRODUCTION

In this paper, we study the space of strongly pseudoconvex CR-
structures on the sphere S***! in a neighborhood of the standard CR-
structure given by the standard embedding as the unit sphere in C"*!,
Three questions present themselves:

(1) Which CR-structures near the standard one arise as the bound-
aries of domains in C"*'?7 (Such CR-structures are said to be
embeddable.)

(2) Is there a normal form for CR-structures near the standard one?

(3) Is there a natural parameterization of the space of equivalence
classes of CR-structures, where two CR-structures near the stan-
dard one are said to be equivalent if they are CR-isomorphic
via a diffeomorphism which is near the identity.
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There is a dichotomy between the cases n > 1 and n = 1. Results
of Boutet de Monvel [BdM] show that, when n is greater than 1, all
CR-structures near the standard one are embeddable; and, as we will
see here, the results of Lempert [L.1] and Bland-Duchamp [BD1] give a
normal form.

In the case n = 1, an example of Rossi [R] shows that there exist CR-
structures near the standard one which are not embeddable. In [BE],
Burns and Epstein showed that they are almost never embeddable.
A recent result of Lempert [L2] showed that if the CR-structure is
sufficiently near the standard one and embeddable in C™ for some
m, then there is an embedding near the standard sphere. This fact
was used in [B] to show that the embeddable CR-structures form a
Hilbert submanifold in the space of all CR-structures and to give a
normal form. Cheng and Lee [CL] have proved the existence of a local
slice for the action of the contact diffeomorphisms on the space of
CR-structures. Our goal here is to outline a framework within which

these results naturally fit. Most of the technical machinery needed is
contained in [BD1], [B]. Details will appear in [BD2].

2. ABSTRACT CR-STRUCTURES ON SPHERES

2.1. Basic facts. We begin with a review of some basic facts about
CR-structures.

Definition 2.1. An n-dimensional Cauchy-Riemann structure
(CR-structure) on S?"*! is a rank n complex subbundle H gy C
T cS*"*! of the complexified tangent bundle of S?"*! such that
(1) Heo)N Hopy =0,
(2) Hc = Huo0)® Ho1y C TS has complex codimension one,
where, as usual, H( ) denotes the conjugate bundle H g,
(3) the integrability condition [X,Y] € I'(H(oy)) is satisfied for all
smooth sections X, Y € I'(H(q 1))

The bundle H g is called the holomorphic tangent bundle of the
CR-structure.

Two CR-structures H( ) and f{(LO) are said to be equivalent if
there is a diffeomorphism F : S§?"+1 — §27+1 gych that FiHg0) =

A

Hg 0. We are only interested in CR-structures up to equivalence.
Observe that H ¢ is the complexification of a real codimension one
subbundle H C 7T'S?"*! consisting of vectors of the form X + 7,
X € H(1,0). Let n be a 1-form dual to H. The CR-structure H g is
said to be strongly pseudoconvex if —idn(X, X) > 0 for all non-zero
X € Hp ). In this case, n A(dn)" is a nowhere vanishing (2n 4 1)-form.
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A real 1-form 7 satisfying this latter condition is called a contact form
and H is called a contact distribution. A diffeomorphism leaving the
contact distribution fixed is called a contact diffeomorphism.

The most important examples of CR-structures are those arising
from domains in C"*!. Let p be a smooth nonnegative function on
C"tl and let D = {z € C™! : p(z) < 1} be a bounded domain.
The boundary dD is a CR-manifold for which the holomorphic tangent
bundle is the intersection of the complexified tangent bundle of 9D with
the holomorphic tangent bundle of C"*!, and, if the pullback to 9D
of the 1-form idp is a contact form, then it is strongly pseudoconvex’.

The standard CR-structure is the one induced by the standard
embedding S?"*! ¢ C"*!' and the standard contact form is the
restriction of 19|z|? to S?"*1, where (z!,...,2"*1) are the coordinates
for C™*'. Henceforth, Hu o C T cS**' denotes the holomorphic
tangent bundle of the standard CR-structure, n denotes the standard
contact form, and H ¢ denotes the complexification of the standard
contact distribution. Objects associated to any other CR-structure
will be decorated with hats. The symbol D:f fg denotes the infinite-
dimensional group of orientation preserving contact diffeomorphisms of
S2ntl

Two strongly pseudoconvex CR-structures on S?"*1 are said to be
isotopic if they can be connected by a smooth 1-parameter family
of strongly pseudoconvex CR-structures. In this paper, we consider
only strongly pseudoconvex CR-structures which are isotopic to the
standard one on S*"*1,

2.2. Representation by Deformation Tensors. Every CR-
structure which is isotopic to the standard one can be represented by
a deformation tensor.

The proof of this fact relies on a theorem of John Gray [G] which
states that all contact structures on a compact manifold near a fixed
contact structure are equivalent:

Theorem 2.1 (Gray). Let n: be a differentiable family of contact
structures on a compact 2n + 1 dimensional manifold M. Then there
1s a differentiable family of diffeomorphisms Fy: M — M and a family

of non-vanishing functions p; such that
7 (ne) = peno -

IThe fact that D is bounded forces the Levy form to be positive everywhere on

oD.
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Corollary 2.1. Every strongly pseudoconver CR-slructure on S*"+!
which is isotopic to the standard one s CR-equivalent to one of the
form

(1) Er(l,o) ={X-9(X) : Xe H )}

where ¢ : Hp1y — Hi0) a complex veclor bundle map, called the

A

deformation tensor for H q).

Proof. That the CR-structure is equivalent to one satisfying the inclu-
sion relation ]:](170) C H ¢ is clear from Gray’s theorem. Thus, there 1s
a family ]A{(LO)(t), t € [0,1], joining Hyg) to f{(l,O)- For ¢ small, it is
clear that there are bundle maps ¢(¢) such that ]'A{(LO)(t) is the graph
of —¢(t). The integrability conditions for CR-structures (see below)
imply that ¢(t) satisfies certain symmetry properties and an a priori
bound on the size of ¢(t), from which the result follows. (See [BDI,

page 83] where a similar argument is given.) O

2.3. Geometry of the Standard CR-structure. There is a natural
circular action on the sphere which leaves the standard CR-structure
invariant—namely, multiplication by the group U(1) of unimodular
complex scalars. Let T' be the generator of this U(1)-action with period
27. The vector field T is characterized by the two conditions

Tln=1 Tldnp=0.

The orbit space of this action is the set of complex lines through the
origin, C P", and the quotient map is the Hopf fibration.
Often, 1t will be worthwhile to do calculations using local coordi-

nates. We will fix our notation now. Let (w',...,w", ) be local co-
ordinates for S?"*!' where (w',...,w™) are the local inhomogeneous
coordinates for C P™ defined by the equations w’ = z7/z"t! and

f is a local fiber coordinate; that is, the w variables parametrize the
complex lines through the origin, and # determines a point on the
line at unit distance from the origin of C"*!. Define the function
u :=log (1 + |w|*). In these local coordinates,

9,
T:%

n=df+ Re(igu)

=df + %(uadwa — ugdw®),
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where we have used the notation v, = du/0w®. A local framing for
H, o) is given by the vector fields
0 @
—u, T,
Jw® + 2"
and the dual coframing is given by the 1-forms dw®, 1 < a < n.

Notice that n defines a connection form on the circle bundle over
C P”, that e, is the horizontal lift of the vector field 9/dw®, and
that

e, 1=

dn = 1 zdw® A dw”
is a nondegenerate 2 form. The form
0= —idy = O0u = u zdw® A dw”
is the Fubini Study metricon C P”.

2.4. Integrability Conditions. Consider now a CR-structure of the
form (1). In local coordinates,

¢=¢5"du’ @ e,
and [:](071) is spanned locally by the vector fields
éa = € — ¢Eﬁ €5 .

Expansion of the brackets [é5, é3] using the commutation relations

[T, e,] =0
[T, ez] =0
[ €a, eg] =0
[ eq, eﬁ] = —u,zT

immediately yields the conditions:
A (Symmetry): ¢ 5 = ¢35, where ¢ 5 =: ¢z u 3
— 1 —
B (Horizontal integrability): dy¢ — = [qb, ¢] = 0, where 0,¢

8(% dw™ A dw® ® e, and where [,] is the bracket operation
w®

(6, 6] = dw®™ A dw” @ [¢5° es, 657 €.
Recall that we assumed [:](1 0) to be isotopic to the standard structure.

There is, therefore, a famlly of tensors ¢(t) with ¢(0) = 0 and ¢(1) = ¢.
The condition H(1 0) N H(O 1) = 0 shows that the composition

¢(t) 0 ¢(t) : Hix o) — Hpp)
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cannot have eigenvalue one. On the other hand, the symmetry con-
dition can be used to show that all eigenvalues are nonnegative real
numbers. Hence, all eigenvalues are bounded above by 1. This is
equivalent to the following condition:

C (Nondegeneracy): |¢osX*X"| < uaﬁXaXﬁ for all X € C”.

Let D,, denote the space of deformation tensors satisfying conditions
(A), (B) and (C). Every strongly pseudoconvex CR-structure on S§?*+!
which is isotopic to the standard one is equivalent to one defined by
an element of D,. Moreover, the group of contact diffeomorphisms of
521 acts on the set of such tensors in a natural way. Consequently,
the classification of these CR-structures on S?"*! can be achieved by
the two-step program of (1) studying the space D, and (2) studying
the action of the group of contact diffeomorphisms on it.

3. THE SPACE D,

Our analysis of the space D,, mimics the approach to deformation
theory of complex structures as developed by Kuranishi. We construct
a complex of certain vector-valued forms. Deformation tensors are the
1-forms of the complex which satisfy a nonlinear differential equation
(the integrability condition (B)), and these are parameterized by a
certain component of their harmonic decomposition.

3.1. The Symmetric Complex (%) (H o)), 3s). We will work on
a subcomplex of the 9j-complex of Kohn-Rossi. The symbols ()
and Q(O’q)(H(LO)) denote the spaces of smooth scalar and H g)-valued
forms on S?"*1. Thus, elements of Q9 and Q(O’q)(H(LO)) are forms of
the types
T = 5 dw®

and _

T = Tgade ® ey,
respectively. (The standard summation and multi-index conventions
are in force throughout.) The operator 0, is given by the formula

Oy = ez (r5%) dw® A dw? ® ey.
In order to take into account the symmetry condition (A) above, we
introduce the hook product of 7 and €2, written 7 A Q:
TAQ =15z dwB A dw” .
The hook product operation is the process of lowering one index via

the Hermitian metric u zdw® @ dw” followed by skew-symmetrization.
In the special case of vector fields (vector forms of type (0,0)), the
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hook product is just interior evaluation. Observe that a tensor ¢ €
Q(O’l)(H(LO)) satisfies condition (A) precisely when
PN =0.
The identity ¢ A Q2 = 0 generalizes, for ¢ > 0, to define the subcom-
plex of symmetric vector-valued forms:
QETM)(H(LO)) ={r : 7TAQ =0}.
For ¢ = 0 this definition will not suffice, since X AQ = 0 for X €
H, gy implies that X = 0; we proceed somewhat differently. We need

a partial inverse of the hook product, written ( )#. Let 5 = 77§alwE be
a horizontal (0, ¢)-form. Then n# is the vector valued (0,q — 1)-form
defined by the local coordinate formula,

7]# = nﬁ1~..ﬁq_17uaq du]ﬁl AU A dTUﬁq_l ® €a,

where (uaﬁ) is the inverse of the matrix (“aﬁ)-
The requirement that 9,X be an element of ng’l)(H(Lo)) forces the

identity X AQ = 0. A simple local calculation then shows that
(locally) such a vector field must be of the form

X = (0 N)*

for f a complex-valued function on S?"*'. We define the space of
symmetric O-forms by the equation

ng’o)(H(l,o)) ={X ¢ Q(O’O)(H(l,o)) D X = (), f e 0™,

where (' denotes the space of smooth, complex-valued functions on
52+ We call Q"9 (H(;)) the space of horizontal Hamiltonian
vector fields.

Definition 3.1. The symmetric complex (Q**)(H o)),d;) is the
differential complex

0 —)Q((J_QO)(H(Lo)) i 2071)(H(170)> i ((7072)(H(170)) E) e .

Remark. The complex Hamiltonian vector fields just defined are related
to contact vector fields. Recall that a contact vector field is a real
vector field Y satisfying the condition

Lyn = hn,

for some function h on S?"*1, When f = gi, with g real, the complex
Hamiltonian vector field X = (9,f)#* is the (1,0) part of a contact
vector field. More precisely,

Xi=—ifT+X+X
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is a contact vector field. Notice that f = Xyl i, and Lx,n =
—T'(f)n-

Using the Folland-Stein estimates, it is possible to develop a Hodge
theory for the symmetric complex with good estimates on the orthog-
onal complement of the harmonic forms. Thus, there are homotopy
maps h, : QO (H o)) — QP7V(H(; 0)) which give rise to the sym-
metric decomposition

T=20;0 ho(T) @ hy o 51)(7) & Hy (1),
where H, : ng’q)(H(LO)) — Hq(ﬂgo")(H(Lo)),gb) is orthogonal projec-

tion onto the harmonic symmetric forms. In degree 0, the symmetric
decomposition assumes the form

X = h, 00y(X) @ H,(X).

Let Qg?;q)(H(LO)) and I'* denote the Folland-Stein completions of
Q{(jo’q)(H(LO)) and C*, with respect to the Folland-Stein norm || ||s
(see [BD1]). Let D, s denote the Folland-Stein completion of the space
D,.. In [BD2] we prove the following theorem.

Theorem 3.1. Suppose n > 1 and s > 2n + 4. Then
H! (Q((joﬂ)(H(LO)),@b) =0 and D, is a smooth Hilbert manifold.

Moreover, let

Ne={f €™ : f Lker (350 (Ds()*) I fllss2 < €}

and assume that ¢ is sufficiently small. Then N, is diffeomorphic to
a neighborhood N' C D, 5. More precisely, every deformation tensor
é € N can be uniquely expressed in the form

¢ = (T fs)*  hoOd,
which defines a diffeomorphism ¢ — fy from N' to N..

The function f, introduced in Theorem 3.1 is called the generating
function for the deformation tensor ¢.

4. NORMAL FORM (n > 1)

The parameterization in Theorem 3.1 is not optimal. Since the action
of the group of contact diffeomorphisms on deformation tensors has
not been taken into account, each equivalence class of CR-structures is
represented by an infinite dimensional family of deformation tensors.
In this section, we show how to normalize small deformation tensors
via this action by contact diffeomorphisms.
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4.1. The Fourier Decomposition. The U(1)-action on S?"*! pre-
serves the standard CR-structure, as well as the contact form 7. It,
therefore, induces an action on the dj-complex, which is equivariant
with respect to the operators A, ( )# and ;. The direct sum de-
composition of the spaces Q(O’q)(H(LO)) into eigenspaces of the U(1)-
action is called the Fourier decomposition. Thus, each vector form
T E Q(O’q)(H(LO)) has the decomposition

+oo
T:ZTk

k=—o0
where
T = Tkﬁae““& dwP @ €y -
and 7, 5 is independent of . If 7 is symmetric, then so is each of

the terms in its Fourier decomposition. The decomposition of tensors
into positive, negative and zeroth order Fourier components gives the
splitting

ng’q)(H(Lo)) == Qg?f)(H(l,O)) @ Ql(ﬂ'?éq)(H(lvo)) @ Q‘(j?f)(H(l’O))

and we write 7 = 7_ + 79 + 7. Similar decompositions are defined
for ordinary forms and for functions. If f is a real-valued function on
5271 then its Fourier decomposition

f=F+l+ /s

satisfies the identities f; = f_ and, consequently, f_ = f,.

Of particular interest are the tensors with only positive Fourier com-
ponents. Such tensors extend holomorphically along each of the disks
of the unit disk bundle of ¥ — C P”, and, because they vanish on
the zero section, they descend to the blow-down—to tensors on the
unit ball in C"*'. Tensors with only a zeroth Fourier component are
pull-backs to £ of forms on C P”, and are called basic. (Here we are
implicitly using the fact that the holomorphic tangent bundle of S?"*!
is the horizontal lift of the holomorphic tangent bundle of C P” via
the connection form 7.)

4.2. Action of the Contact Diffeomorphisms. We now consider
the action of the group of contact diffeomorphisms on the space of
deformation tensors. This action is not strictly a pullback of the de-
formation tensor; rather, it pulls back the CR structure, and considers
the new CR structure as a deformation of the standard one. More
specifically, we have the following definition.
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Definition 4.1. Let ¢ be a deformation tensor on S?**! and F :
S+l G+l 4 contact diffeomorphism and let [:](1 0) C H ¢ be the
bundle of vectors of type (1,0) defined by ¢. There a unique subbun-
dle H(’ 100 CHe such that the equation F, H(1 0) = H( o) holds. The
pullback of ¢ by F', written F*¢, is the deformation tensor whose
space of (1,0)-vectors is ]A{(’LO).

This defines an action

)Diffux D, — D,
(£, ¢) — F*¢
To compute the derivative of the map W at the point (¢d,0), we work
formally, leaving details to [B] and [BD2].

Let Fy = wd+t X5+ O(tz) denote the one parameter family of contact
diffeomorphisms which is generated by a contact vector field Xy, where
f = gi is pure imaginary as above. Let ¢, = t¢ + O(1*) be a family
of deformation tensors and let X = (9,f)* = X* e,. We calculate
(to first order in t) as follows. Recall that the vectors of type (0,1)
with respect to ¢, are spanned by ‘ez = ez — ¢3,” e,. Then, since
F7' =4d — tX; + O(t?), the pull-back under F} of the space of (0,1)-
vectors is spanned by the set

dF" o5 = e5— 1 e5(X7) ey — 1 eg(X7) e5 — td5" e, + O(1%).

After a change of basis, we find that it is also spanned by vectors of
the form

e5—1 (657 + e5(X7)) e +0(1).
Thus, the derivative dW¥ ;50) has the form

. JTDiffux TD—TD
R (x5, 8) — 6+ By(Buf)*

where f = g¢ for some real-valued function ¢ .

4.3. Cancelling Negative Fourier Coefficients. We now show
how the action of the group of contact diffeomorphisms can be used to
normalize deformation tensors. As we have just seen, the infinitesimal
action is of the form

¢ 6+ (D f)*
where f is pure imaginary. We have also seen that, for n > 1, ¢ has
the decomposition

¢ = 05(Ipfs)* + ho(s9)
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and that ¢ is uniquely determined by its generating function fy.

Notice that, one may construct a pure imaginary function by start-
ing with an arbitrary function with no positive Fourier components
and subtracting from it the conjugate of its negative Fourier compo-
nents. We can use this freedom to modify the negative (and part of
the zeroth) Fourier components of a deformation tensor via the action
of the group of contact diffeomorphisms. An application of the Im-
plicit Function Theorem for Banach spaces gives the following normal
form result, which shows that every sufficiently small deformation of
the standard CR-structure on the spheres S?"*1, n > 1 is representable
by a deformation tensor with no negative Fourier components.

Theorem 4.1. Letn > 1 and s > 2n + 4. Then there is a number
€ > 0 depending on n and s such that each deformation tensor ¢ € D, ,
with ||¢||s < € is CR-equivalent to a deformation tensor in the normal
form

D(Dsf)* + ho(T)

where f € Ts1o(S* 1) and 7 € Qf,?ﬁl(ﬂ(m)) have Fourier decomposi-
tions of the forms

+oo +o0
F=3 fiandr =37,

where fo is the pull-back of a real-valued function on C P". The

tensor 7 is uniquely determined by the generating function f.

Remark. The normal form constructed in this theorem is unique up
to specification of a finite number of additional parameters. This is
clear from the observation that the linearized mapping dW¥;40) has a
finite dimensional kernel of the same dimension as the automorphism
group of the standard CR structure on the sphere. Specifying these
parameters can be interpreted as determining a point on the sphere,
and a second order framing at that point. (In the case n = 1, this
normalization appears in [CL].)

Remark. The proof of this theorem will appear in [BD2]. It involves en-
dowing the neighborhood of the identity in Dz f fi with a Hilbert space
structure which is compatible with the Folland-Stein norms. With re-
spect to this structure, one can show that the action W is of class C!
on the Folland-Stein completions of Di f fi and D,,.

Omori [O] has analyzed the action of the contact diffeomorphism
group in great generality; our analysis is similar to his. Omori’s treat-
ment, however, is based on the standard Sobolev spaces while our work

Yes? Ask Jack.
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uses the anisotropic norms of Folland-Stein. This fundamental differ-
ence means that a much more detailed analysis is required. This anal-
ysis, in the case of S?, is contained in [B], and the higher dimensional
cases will be discussed in [BD2]

4.4. Recovering the Indicatrix. In general, it is impossible to elim-
inate the zeroth Fourier component of a deformation tensor through the
action of the contact diffeomorphism group. For suppose that we have
normalized to a deformation tensor of the form ¢ = >°;7, ¢, where
¢ is a small deformation with ¢9 # 0. Since ¢¢ descends to define
a deformation of the complex structure C P”, and C P” is stable,
there is a small diffeomorphism, say F', of C P”™ which is an biholo-
morphism between C P” with the complex structure defined by ¢q
and its standard structure (i.e. F*(0) = ¢o). Notice that F' is unique
up to a bitholomorphism of C P™ and it is generally not symplectic.
Lift ¥ to a bundle map F : $2"*1 — §27+1 Gince F does not preserve
the symplectic form of C P (the curvature form of the connection
n), F does not preserve the connection form 7. Let ' be the unique
connection form for which F*n’ = . Thus,
n'=n+p

where 3 is the pullback of a 1-form on C P™. Notice that the con-
tact structure on S?"*1 defined by 7’ is not the standard one, and it
defines a unique (up to a constant dilation) Hermitian norm A on the
tautological bundle £ — C P". If S, denotes the unit circle bundle
with respect to this new norm, then the map F may be interpreted
as a CR-isomorphism between S?"*! with the deformed CR-structure
given by ¢ and the standard CR-structure on S} which it inherits as

hypersurface of E (or, equivalently, of C"*!); that is, we have the CR
embedding:

F . (52n+1’¢0) N Sh C Cn—}-l.

Now, because F is a U(1)-equivariant contact diffeomorphism between
S2nt1l and Sy, the CR-structure defined by ¢ is transferred via F' to a
CR-structure on S, of the form

o=
k=1

The deformation tensor ¢’ is now to be interpreted as a deformation
of the circular domain S;, and it is precisely the modular data of the
type considered by us in [BD1], where we show it to be the modular
data for a marked, linearly convex domain in C"*!. (Recall that a
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marking of a domain D C C™*! consists of a point p € D together
with a complex basis for the complex tangent space T,D.)

In [BD1], we show that the data depends only on the biholomorphism
class of D and the marking. Moreover, specifying the marking amounts
to specifying (n + 1)? + n + 1 parameters. Thus, the pair (S, ¢')
is uniquely determined up to the specification of a finite number of
additional parameters.

Infinitesimal Generating Functions for Indicatrices. Changing the indi-
catrix has a nice interpretation within the framework of the symmetric
complex. Recall that the sphere is the set of points in C"*! defined
by the equation |z|> = 1. The indicatrix S, above is defined by the
equation
h:=|z|’¢" =1,

where, by definition, v = log(h/|z|*), which descends to a function on
C P". The contact structure on S?"*! defined by A is the 1-form

n' =mn+1/2(dv — dv)
and the map F discussed above is constructed as follows: Set 7, =

n+t8, where 3 = i/2(0v — Ov). Then there is a 1-parameter family of
diffeomorphisms Fy : §?"+1 — §27+1 guch that

Fene=mn,
which is constructed as follows by a variation of Weinstein’s proof of
the Darboux theorem [W]. (The technique is due to Moser.) Begin by
letting Y; be the time dependent vector field characterized by the two
conditions
Yidn =0 Y, ddnp=-5.

(When v is small, such a vector field exists.) Let F, be the 1-parameter
family of diffeomorphisms generated by Y;. Then,

'CYﬂ?t = _6 .

Now compute:

d AL % d77 Tk [/
E( tnt) = F; (d—;+£Yt77t) = (B-p8)=0.
This implies that Ft*m is independent of ¢. Since Fy = id and FO*UO =,
it follows that Fy'n, = n for all ¢.
Notice that Y; = 1/2(X; + X;) where X; is the (1,0)-vector field
defined by the equation

XtJ Qt = —a'U,
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Where_ﬂt = —idn;. The lift of X; to a horizontal vector field on S?"+!
is —(Jyv)#* and one finds that (to first order)

gbt = Ft*(()) = —tgb(gbv)# + O(tQ)

Thus, the process of transferring to a new indicatrix is represented
infinitesimally by a term of the form —d,(dyv)#, for v a real-valued
function on C P™.

4.5. Explicit Construction of Embeddings. When the deforma-
tion tensor ¢ has sufficiently small Folland-Stein norm ||@|[s, s > 2n+4,
it is possible to obtain explicit embeddings which realize the abstract
CR-structure defined by ¢ as the CR-structure on a hypersurface.
Moreover, when ¢ is in normal form, this embedding coincides with
a circular map constructed by Lempert [L1] and yields a solution of
the homogeneous Monge- Ampére equation on the interior.

An embedding into C™*! is obtained by constructing (n + 1) in-
dependent functions which are CR with respect to the deformed CR-
structure given by ¢. Let h be one such function. It is easy to show
that a complex-valued function h is a CR-function on S2"*! with re-
spect to the CR-structure defined by ¢ if and only if it satisfies the
equation

(2) @y —¢-)h =0,
where ¢ - 9y 1= ¢_| 0, := ¢3” e,.
To find h we write it in the form
h=h+ g

where h is the harmonic projection of h onto the space of CR-functions
on S?"*1 with respect to the standard structure. Notice that the func-
tion g = h—his L?-orthogonal to these CR-functions.

The function h can be viewed as a perturbation of A. We will show
that when the Folland-Stein norm |||, is sufficiently small, & deter-

mines ¢, and, therefore, it determines h. To see this, note that from
equation (2), it follows that

G,(Dy— ¢+ 0y) g = GI,(¢ - Dyh).
Since ¢ 1s perpendicular to the space of CR-functions, nggbg =g =
Ig. Hence, ¢ is a solution of the equation
(3) (I—GBy0¢-)g=GD,(¢- Dh).

The operator on the left hand side of this equation is invertible if the
operator norm of G@Z 0 ¢ - Oy is less than one, and this is the case,
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provided that the Folland-Stein norm ||¢||s is sufficiently small. Assume
that this is the case and let g be the solution to equation (3).

It remains to show that A is a solution of equation (2). To this end,
set 3= (0 — ¢ - 3 )h and notice that, by construction, G3, 3 = 0. For
n > 1, the (0, 1)-form 8 has the harmonic decomposition

B =0,G0,B + CG0,0,3.
Since ng B = 0, we may compute as follows:
B = (3,0,
= GO,(0y — ¢ - 0y) B+ GO, (6 - 0PB)
=G, (D — ¢ 0)(@s — ¢ 0)h + GT (6 0uB)
= Gy (¢ - 0p3),

where we have used the integrability condition for ¢ at the last step.
On the other hand, if ||#]|; is sufficiently small, then

181541 = 1GT5 (¢ - BB8) 1541 < 18|41
which implies that g = 0.
To obtain an explicit embedding, let A7, 5 = 1,2...,n + 1 be the
restrictions to S?"*! of the standard coordinate functions on C"*1!, let

hi = hi+ ¢’ be the CR-functions obtained by the procedure we just
outlined. They define a map

. 2n+1 n+1
F:S — C"

which, by construction, is a CR-map of (S5?"*' ¢). By the Sobolev
embedding theorem of Folland-Stein [FS], for Folland-Stein norm ||¢||s
sufficiently small, s > 2n + 4, F will be at least C**® for some a > 0.
Let D C C™*!' be the domain bounded by F(S***!) and note that,
for ¢ sufficiently small, D is strongly convex.

Recall that, when ¢ is in normal form, it has no negative Fourier
components. This important fact means that ¢ extends holomorphi-
cally along the unit disks of the Hermitian vector bundle ¥ — C P”
to define an integrable complex structure on the unit disk bundle of £
with respect to the standard metric, and that the map F' extends to
a map which is holomorphic relative to this deformed complex struc-
ture. If we transfer the map to the indicatrix S, defined by the zeroth
Fourier component of ¢, then one can show that the map F descends
to a C'-map from the indicatrix I = {z € C"*!' : h(z) < 1} into the
strongly convex domain D. The results of [BD1] show that the map ¥
is one of the circular representations of the strongly convex domain



16 JOHN BLAND AND TOM DUCHAMP

D constructed by Lempert [L.1]. We have, thus, recovered Lempert’s
construction for domains in a neighborhood of the round sphere.

5. NORMAL FORM n =1

The case of S? is both simpler and more subtle than the higher di-
mensional case S*"*1, n > 1. It is simpler because both the symmetry
condition (A) and the integrability condition (B) are vacuous—there
are no 2-forms—and because there is a global framing of the holo-
morphic tangent bundle H; o) which facilitates computations. It is
more subtle because the degree 1 cohomology of the symmetric com-
plex is infinite dimensional, making it impossible to normalize all neg-
ative Fourier components of a deformation tensor to zero. The detailed
analysis of the 3-dimensional case is done in [B].

For n = 1, the symmetric complex assumes the form

0 — QOO (Hpy ) 2 QOD(Hy o) —0.

It is convenient to express all tensors in terms of the global framing on
S3 obtained by restricting the vector fields

/== — T =—Im (ZI%—I—ZQ%)
on C?to S®. The dual coframe is the restriction to S® of the 1-forms
w= 22" — 2'd2?, W=z — 2N, = — Im(dlog |z|?) .

Notice that every deformation tensor is of the form

¢p=pw@7Z, |ul<1.

To translate into the coordinates (w,#) used above, write z? = (1 +
[w|?)71/% and w = z'/z% and recall that e := e; is a local framing for
H0). A straightforward computation then yields the formulas

w=e(1+ |w?dw and Z = e (1 + |w]*) e
It follows that the tensor ¢ has the form
(4) o= 6_49i/¢d@ R e.

The cohomology of the symmetric complex was computed in [B],
where it was demonstrated that

(5) Hl(ﬂgo")(H(LO)),gb) := coker d; o (9 ( ))#
={(A(z)2" + h(2)) @@ Z : fi(z) €eCR(S7),j =1,2},

where CR(S?) denotes the space of CR-functions on S®—that is, the
boundary values of holomorphic functions on the unit ball which are
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smooth up to the boundary. Thus, by virtue of equation (4), every
cohomology class [¢] € H' (ng")(H(LO)),ab) has a representative with
Fourier decomposition of the form

6=3 ér.

The existence of cohomology classes with representatives having neg-
ative Fourier components implies that (at least at the infinitesimal
level) there are CR-structures for which it is impossible to find repre-
sentatives having no negative Fourier components. However the coho-
mology group Hl(ﬂgo")(H(LO)),gb) is the only obstruction [B]:

Theorem 5.1. Fvery CR-structure sufficiently near the standard one
in the Folland-Stein s-norm s > 6) is equivalent, via a small contact
diffeomorphism, to one of the form

(*) b=+ do+ b4

where ¢g = 1gdw @ e for the pull back of some real-valued function g
on C P!,

b= (4Tt 2
for CR functions f; as in (5), and

¢+==§5¢k-
k=1

The form (*) is unique up to the choice of a marking on the CR man-
ifold (determined by fixring 7 additional parameters.)

Of these, the only CR structures that embed in C™ for some integer
m are those for which ¢_ = 0. Hence, the space of embeddable small
deformations of the standard sphere forms a contractible linear space.

Remark. The last part of Theorem 5.1 follows from a stability result
of Lempert contained in [L.2].
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