Math 125, Sections E and F, Fall 2011, Solutions to Midterm I

1. Evaluate the following integrals.
(a) (1 point) $\int_{-1}^{1} \frac{\sin t}{1+t^{2}} d t=0$ becuase the integrand is an odd function.
(b) (2 points) $\int \frac{\sqrt{x}-5 x^{2}}{x} d x=2 \sqrt{x}-2.5 x^{2}+C$
(c) (3 points) Let $u=6-4 x$, then

$$
\int_{0}^{1}(6-4 x)^{5} d x=-\frac{1}{4} \int_{6}^{2} u^{5} d u=\frac{5824}{3}
$$

(d) (4 points)

$$
\int_{0}^{3}\left|x^{2}-4\right| d x=\int_{0}^{2}-\left(x^{2}-4\right) d x+\int_{2}^{3}\left(x^{2}-4\right) \quad d x=\frac{23}{3}
$$

2. Let g be the function whose graph is given below. The pieces from $x=0$ to $x=7$ are lines.
(a) (5 points) The equation of the line from $x=3$ to $x=5$ is $y-1=\frac{5}{2}(x-3)$ so the line crosses the x axis at $x=17 / 5$. Therefore,

$$
\int_{6}^{3} g(x) d x=-\int_{3}^{6} g(x) d x=-\left[\frac{1}{5}-\frac{16}{5}-4\right]=7
$$

(b) (3 points) Let $f(x)=\int_{2}^{x^{2}} g(t) d t$. Compute $f^{\prime}(5 / 2)$.

By the Fundamental Theorem of Calculus and the chain rule

$$
f^{\prime}(x)=g\left(x^{2}\right) \cdot 2 x
$$

so

$$
f^{\prime}(5 / 2)=g(25 / 4) \cdot 5=-4 \cdot 5=-20
$$

(c) (2 points) Approximate $\int_{6}^{10} g(x) d x$ with $n=4$ and using midpoints. Here $\Delta x=1$ so

$$
\int_{6}^{10} g(x) d x \approx g(6.5)+g(7.5)+g(8.5)+g(9.5)=-4-3+1+2=-4
$$

3. Find the volume of a frustum of a pyramid with square base of side 6 and a square top of side 4 and height 12 by completing the following steps.
(a) (1 point) Slice the pyramid horizontally. What are the cross sections? Squares
(b) (5 points) Find the volume ΔV of a cross section in terms of y. Your answer should have a Δy in it. Hint: Draw a trapezoid cross section picture on the $x y$-plane to help you.

$$
\Delta V \approx\left[2\left(-\frac{1}{12} y+3\right)\right]^{2} \Delta y
$$

(c) (1 point) Use your answer from above to write an integral which represents the volume.

$$
V=\int_{0}^{12}\left[2\left(-\frac{1}{12} y+3\right)\right]^{2} d y
$$

(d) (3 points) Evaluate the integral to find the volume. Let $u=-\frac{1}{12} y+3$, then

$$
V=\int_{0}^{12}\left[2\left(-\frac{1}{12} y+3\right)\right]^{2} d y=-48 \int_{3}^{2} u^{2} d u=304
$$

4. Let R be the region in the first quadrant bounded on the right by the hyperbola $x^{2}-y^{2}=8$, on the left by $y=\frac{x}{3}$ and below by the x-axis. A sketch of the hyperbola is provided below.
(a) (2 points) Sketch the region showing all relevant points of intersection.

The three corners of the triangular region are $(0,0),(3,1),(2 \sqrt{2}, 0)$.
(b) (3 points) Set up and integral to compute the area of the region. Do not evaluate the integral.

$$
\int_{0}^{1} \sqrt{y^{2}+8}-3 y d y
$$

(c) (5 points) Set up an integral to find the volume of the solid obtained by rotating the region R about the line $x=7$. Do not evaluate the integral.

$$
\pi \int_{0}^{1}\left[(7-3 y)^{2}-\left(7-\sqrt{y^{2}+8}\right)^{2}\right] d y
$$

