Math 125, Sections F and G, Autumn 2012, Solutions to Midterm I

1. Evaluate the following integrals.
(a) $\int_{1}^{4} \frac{9 x^{3}+\sqrt{x}}{x} d x=\int_{1}^{4} 9 x^{2}+x^{-1 / 2} d x=3 x^{3}+\left.2 \sqrt{x}\right|_{1} ^{4}=191$
(b) $\int_{1}^{e} \frac{\ln x}{x} d x$

Let $u=\ln x$ then $d u=\frac{1}{x} d x$ so

$$
\int_{1}^{e} \frac{\ln x}{x} d x=\int_{0}^{1} u \quad d u=\frac{1}{2}
$$

(c) $(3$ points $) \int \frac{x^{2}+2 x+3}{x-1} d x$

Let $u=x-1$ then $d u=d x$ so

$$
\begin{gathered}
\int \frac{x^{2}+2 x+3}{x-1} d x=\int \frac{(u+1)^{2}+2(u+1)+3}{u} d u \\
=\int u+4+\frac{6}{u} d u=\frac{1}{2} u^{2}+4 u+6 \ln |u|+C=\frac{1}{2}(x-1)^{2}+4(x-1)+6 \ln |x-1|+C
\end{gathered}
$$

2. Let

$$
f(x)=\int_{1}^{x^{2}+1} e^{\sin t} d t
$$

Answer the following questions about $f(x)$.
(a) $f(0)=\int_{1}^{1} e^{\sin t} d t=0$
(b) $f^{\prime}(x)=2 x e^{\sin \left(x^{2}+1\right)}$
(c) Is $f(-2)>f(1)$?

$$
f(-2)-f(-1)=\int_{1}^{5} e^{\sin t} d t-\int_{1}^{2} e^{\sin t} d t=\int_{2}^{5} e^{\sin t} d t>0
$$

since $e^{\sin t}>0$ and $2<5$. So, yes, $f(-2)>f(1)$.
(d) Is f increasing or decreasing at $x=2$?

From part (b), $f^{\prime}(2)=2 \cdot 2 \cdot e^{\sin 5}>0$ so f is increasing at $x=2$.
(e) Approximate $f(1)$ with $n=4$ and using right points. Round your answer to three decimal points. We have

$$
f(1)=\int_{1}^{2} e^{\sin t} d t
$$

so $\Delta t=1 / 4$ and

$$
f(1) \approx \frac{1}{4}\left[e^{\sin (5 / 4)}+e^{\sin (6 / 4)}+e^{\sin (7 / 4)}+e^{\sin (8 / 4)}\right] \approx 2.613
$$

3. The following questions are about the region whose graph is given below. The intersection points are at $(1,10),(2,8)$ and $(0,0)$. The curve has the equation $y=x^{3}$.
(a) Set up integral(s) ending in $d x$ to find the area.

$$
A=\int_{0}^{1} 10 x-x^{3} d x+\int_{1}^{2}(-2 x+12)-x^{3} d x
$$

(b) Set up integral(s) ending in $d y$ to find the area.

$$
A=\int_{0}^{8} y^{1 / 3}-\frac{y}{10} d y+\int_{8}^{10}\left(\frac{-y}{2}+6\right)-\frac{y}{10} d y
$$

(c) Evaluate your answer in part (a) or (b) to find the area. $A=10$.
4. The following questions are about the region between the line $y=x+4$ and the parabola $x=y^{2}-16$.
(a) Sketch the region labeling all intersection points.

The intersection points are $(-7,-3)$ and $(0,4)$.

(b) Set up an integral to find the area of the region. Do not integrate.

$$
A=\int_{-3}^{4}(y-4)-\left(y^{2}-16\right) d y
$$

(c) Set up an integral to find the volume generated by rotating the region about the y-axis. Do not integrate.

$$
V=\int_{-3}^{4} \pi\left[\left(0-\left(y^{2}-6\right)\right)^{2}-(0-(y-4))^{2}\right] d y
$$

(d) Set up an integral to find the volume generated by rotating the region about the horizontal line $y=-6$. Do not integrate.

$$
V=\int_{-3}^{4} 2 \pi(y+6)\left[(y-4)-\left(y^{2}-16\right)\right] d y
$$

