Math 125, Section E, Spring 2011, Midterm I April 21, 2011

Name\_\_\_\_\_ TA/Section\_\_\_\_\_

Instructions.

- There are 4 questions. The exam is out of 40 points.
- You are allowed to use one page of notes written only on one side of the sheet in your own handwriting. Hand in your notes with your exam paper.
- You may use a calculator which does not graph and which is not programmable. Even if you have a calculator, give me exact answers.  $(\frac{2 \ln 3}{\pi}$  is exact, 0.7 is an approximation for the same number.)
- Show your work. If I cannot read or follow your work, I cannot grade it. You may not get full credit for a right answer if your answer is not justified by your work. If you continue at the back of a page, make a note for me. Please BOX your final answer.

| Question | points |
|----------|--------|
| 1        |        |
| 2        |        |
| 3        |        |
| 4        |        |
| Total    |        |

- 1. Evaluate the following integrals.
  - (a) (4 points)

$$\int_{0}^{1/2} t \sec^2(t^2) \ dt$$

(b) (4 points)

 $\int (e^x + e^{-x})^2 dx$ 

(c) (4 points)

$$\int_0^5 x\sqrt{x+4} \, dx$$

2. (10 points) Define  $g(x) = \int_5^x f(t)dt$  where f is the function whose graph is shown below. All the critical points of the graph have integer coordinates.



(e) g''(2) = (f) g''(3) =

(g) Let 
$$h(x) = \int_{x}^{x^{2}} f(t)dt$$
. What is  $h'(2)$ ? (h)  $\int_{0}^{2} g(x)dx =$ 

3. An object is moving along the x-axis with acceleration at time  $t \ge 0$  given by

$$a(t) = -\frac{60}{(t+3)^2}$$
ft/sec<sup>2</sup>.

The object has initial velocity v(0) = 5 ft/sec.

(a) (3 points) At what time does the object reverse direction?

(b) (5 points) What is the total distance travelled by the object from t = 0 to t = 4 seconds?

- 4. Let R be the region bounded above by the curve  $y = -x^2 + 6$ , on the right by y = 5x and on the left by the y-axis.
  - (a) (3 points) Sketch the region showing all relevant points of intersection.

(b) (7 points) Find the volume of the solid obtained by rotating the region R about the line y = 7.