Math 125, Section E, Spring 2011, Midterm I
April 21, 2011

Name
TA/Section

Instructions.

- There are 4 questions. The exam is out of 40 points.
- You are allowed to use one page of notes written only on one side of the sheet in your own handwriting. Hand in your notes with your exam paper.
- You may use a calculator which does not graph and which is not programmable. Even if you have a calculator, give me exact answers. ($\frac{2 \ln 3}{\pi}$ is exact, 0.7 is an approximation for the same number.)
- Show your work. If I cannot read or follow your work, I cannot grade it. You may not get full credit for a right answer if your answer is not justified by your work. If you continue at the back of a page, make a note for me. Please BOX your final answer.

Question	points
1	
2	
3	
4	
Total	

1. Evaluate the following integrals.
(a) (4 points)

$$
\int_{0}^{1 / 2} t \sec ^{2}\left(t^{2}\right) d t
$$

(b) (4 points)

$$
\int\left(e^{x}+e^{-x}\right)^{2} d x
$$

(c) (4 points)

$$
\int_{0}^{5} x \sqrt{x+4} d x
$$

2. (10 points) Define $g(x)=\int_{5}^{x} f(t) d t$ where f is the function whose graph is shown below. All the critical points of the graph have integer coordinates.

(a) $g(6)=$
(b) $g(0)=$
(c) $g^{\prime}(8)=$
(d) $g^{\prime}(1)=$
(e) $g^{\prime \prime}(2)=$
(f) $g^{\prime \prime}(3)=$
(g) Let $h(x)=\int_{x}^{x^{2}} f(t) d t$. What is $h^{\prime}(2)$?
(h) $\int_{0}^{2} g(x) d x=$
3. An object is moving along the x-axis with acceleration at time $t \geq 0$ given by

$$
a(t)=-\frac{60}{(t+3)^{2}} \mathrm{ft} / \sec ^{2}
$$

The object has initial velocity $v(0)=5 \mathrm{ft} / \mathrm{sec}$.
(a) (3 points) At what time does the object reverse direction?
(b) (5 points) What is the total distance travelled by the object from $t=0$ to $t=4$ seconds?
4. Let R be the region bounded above by the curve $y=-x^{2}+6$, on the right by $y=5 x$ and on the left by the y-axis.
(a) (3 points) Sketch the region showing all relevant points of intersection.
(b) (7 points) Find the volume of the solid obtained by rotating the region R about the line $y=7$.

